Estimating UXO Spatial Density Using a Composite Index Technique

Problem Statement

- Military training has taken place over the "Sole Source" Aquifer for western Cape Cod.
- Could UXO corrosion pose a future threat to groundwater?
 - What is the spatial distribution of UXO?
 - What potential contaminants are contained within UXO items?
 - How much contaminant could be released to the environment as UXO casings corrode?
 - What impacts to the aquifer will result from potential future releases?

Site Location

Massachusetts Military Reservation, Camp Edwards

Presentation Overview

- Integrating 3 independent indicators of unexploded ordinance (UXO) spatial density
- Derivation of a Composite Index Function
- Computing/mapping estimated UXO density
- Preliminary validation studies
- Projecting contaminant loading to aquifer
- Other ongoing efforts

Conceptual Site Model

UXO Density Indicators

- Proximity to known target locations intended location of ordnance deposition
- Aeromagnetic signal intensity presence of UXO and metal debris (including target objects) in soils
- Cleared areas disturbance of vegetation due to range activities i.e. impact craters
- Firing fans intended path of ordnance travel
- Soil Data presence of explosives particulates

Target Locations

Target Proximity

Proximity Value vs. Known UXO Density in 14 Test Plots

Target Proximity Ranking Map

Aeromagnetic Intensity

Known Density vs. Aeromagnetic Intensity

Cleared Areas from airphotos

1943, 1947, 1955, 1966, 1977, 1986, & 1991 (not shown) Bubble size is proportional to clearance percentage for each 1-acre grid cell

Cleared Areas from airphotos

Time-weighted clearance value for 55 years 1943-1997 48 No-Photo years: Maps interpolated or extrapolated (1992-97)

Cleared Areas Ranking Map

Known Density vs. Individual Indices

Compositing Three Indices

Col_Row	HE UXO KD, 30 cells, # / ac	Airphoto clearance value	TgtProx value	NT MEDIAN value	Airphoto clearance rank	TgtProx rank	NT MEDIAN rank	Sum of Inverse Ranks
22 - 13		5.02	0.245	7.72552	1	86	3	1.345
22 - 17		2.92	0.911	5.84172	14	1	5	1.271
24 - 9		0	0.132	12.4171	950.5	492	1	1.003
24 - 27		3.51	0.393	8.15704	8	3	2	0.958
24 - 28	81.4	4.44	0.364	3.49423	3	5	9	0.644
24 - 16		4.78	0.283	1.31085	2	35	28	0.564
16 - 26		0.87	0.456	0.301525	93.5	2	351	0.514
30 - 29		0.13	0.345	6.16208	261.5	7	4	0.397
22 - 23		4.07	0.318	3.26218	5	12	11	0.374
32 - 29		3.09	0.350	3.26821	12	6	10	0.350
22 - 27		2.31	0.364	1.96867	25	4	18	0.346
21 - 13		3.84	0.218	3.67343	6	146	7	0.316
9 - 31	83.1	1.27	0.327	3.55551	60.5	8	8	0.267
40 - 37		4.25	0.067		4	1456	800.5	0.252
31 - 29		1.71	0.306	4.11876	39	17	6	0.251
21 - 17		3.34	0.326	0.73119	11	9	70	0.216
23 - 27		2.29	0.322	2.45547	26	11	14	0.201
22 - 24		2.71	0.299	2.85902	17	23	12	0.186
21 - 14		3.64	0.226	0.621105	7	129	94	0.161
22 - 22	39.2	2.75	0.284	1.88161	16	32	19	0.146
24 - 26		3.50	0.260	0.86707	9	61	53	0.146

Sum of Inverse Ranks: Value vs. Rank

Absolute UXO Density Correlation

Estimated UXO Density

Col_Row	HE UXO # / ac (30 cells)	Airphoto Clearance rank	Target Proximity rank	Mag nT (Median) rank	Sum of Inverse Rankings	UXO Density	H M L	Proposed Field Cell
22 - 13		1	86	3	1.345	81.0	Н	
22 - 17		14	1	5	1.271	80.2	Н	H1
24 - 9		950.5	492	1	1.003	77.0	Н	
24 - 27		8	3	2	0.958	76.4	Н	
24 - 28	81.4	3	5	9	0.644	70.9	Н	
24 - 16		2	35	28	0.564	69.1	Н	
16 - 26		93.5	2	351	0.514	67.8	Н	
30 - 29		261.5	7	4	0.397	64.2	Н	
22 - 23		5	12	11	0.374	63.4	Η	
32 - 29		12	6	10	0.350	62.5	Η	
22 - 27		25	4	18	0.346	62.3	Н	
21 - 13		6	146	7	0.316	61.1	Η	
9 - 31	83.1	60.5	8	8	0.267	58.8	Η	
40 - 37		4	1456	800.5	0.252	58.0	Н	
31 - 29		39	17	6	0.251	58.0	Η	
21 - 17		11	9	70	0.216	55.9	Η	
23 - 27		26	11	14	0.201	54.9	Η	
22 - 24		17	23	12	0.186	53.8	Н	
21 - 14		7	129	94	0.161	51.9	Η	
22 - 22	39.2	16	32	19	0.146	50.5	Η	
24 - 26		9	61	53	0.146	50.5	Η	
28 - 28		157	18	17	0.121	47.9	Η	
25 - 27	23.8	23	25	32	0.115	47.2	Η	
22 - 19		13	44	72	0.114	47.1	Н	

Estimated UXO Density

Area - Density Relationships

Field Validation Studies

Validation Results (In Progress)

Ongoing Studies

- Current spatial density validation study to be expanded to include an additional 3 test plots.
- Pan lysimeter study being conducted under a perforated 155 mm artillery shell to validate release rate models.
- Refinement of release rate estimate and evaluation of sensitivity using groundwater fate-and-transport model.
- Proposal to implement probabilistic methods to model corrosion processes and release dynamics.

Conclusions

- The composite index is better predictor of UXO density than the three component indices individually and,
- Based on validation studies, is a good estimator of relative density and a <u>reasonable</u> estimator of absolute density.
- Aquifer impacts can be predicted using conventional deterministic groundwater fate-andtransport modeling techniques.
- Probabilistic methods applied to corrosion modeling may have potential in predicting the likelihood of future release.