Acetone Production as a Result of Sodium Bisulfate Preservation Using EPA Method 5035

Jay Clausen (Ogden)
Elizabeth Wessling (Ogden)
Marilyn Hoyt (Ogden)
Bryce Stearns (STL - Burlington)
Bosci Ramirez (STL - Chicago)

Introduction

- Environmental investigation of MMR
- Explosives primary contaminants of interest
- Over 1,500 surface soil samples collected
- Over 650 subsurface soil samples

Site Location

Background

 Acetone and MEK initially observed at low levels in 1997 using Method 5030 (< 20 ppb)

 Upon switch to Method 5035 (sodium bisulfate preservation) high levels of acetone and MEK observed (> 100 ppb)

Method 5030 Issues

- Significant volatilization loss
- Potential for biodegradation
- MADEP recognition of Method 5030 shortcomings resulted in adoption of Method 5035 in early 1999

Method 5035 Options

- Methanol Preservation
- Sodium Bisulfate Preservation
- Deionized water
- No preservative, special sampler

Acetone in Project Samples

Potential Acetone Sources

- Site contamination
- Matrix effect
- Instrument effect
- Laboratory cross-contamination
- Field contamination
- Chemical reactions in sample

Incidental Sources of Acetone

- HPLC Grade Methanol 11 and 14 ug/L
- Antifreeze 360 ug/L
- Electrical Tape 5 ug/L
- Ambient air in field 6 ug/L
- Sharpies 4 ug/L

Acetone in Project Samples

Acetone Levels in Field Duplicates

Acetone in Site Samples vs Contact Time with Sodium Bisulfate

Preliminary Evaluation

- Deionized Water
- Sodium Bisulfate

Deionized Water Preserved Samples

Sodium Bisulfate Preserved Samples

Sodium Bisulfate Preservation Observations

- Increased frequency of detection of acetone and MEK
- Higher concentrations of acetone and MEK

Soil Preservation Methods Evaluated

- No preservative (Method 5030)
- Deionized Water
- Frozen Deionized Water
- Sodium Bisulfate
- Sodium Bicarbonate
- Methanol

Soil Properties

Uncontaminated Site Soil w/ native plant material
 Organic Loam

Initial pH = 5.22

Moisture content = 19 %
Sand

Initial pH = 6.00

Moisture content = < 10 %

Control Sample - organic free sand

Preservation Methods - Sand

Preservation Methods - Organic Loam

Multiple Regression Analysis

- Detected acetone concentrations may depend on
 - ° Concentration of organic carbon (OC) in the sample
- Sample holding time (HT) 490 samples analyzed for acetone
 - 490 HT measurements
 - ° 177 samples also analyzed for OC
- Distributions of acetone concentrations, OC concentrations, and HT appear skewed
- Log-transformed data were used in regression analysis

Results of Simple Linear Regression

- Significant correlation between acetone and OC (p < 0.001)
 - R² = 0.16 (explains 16% of the variability in acetone concentrations)
- Significant correlation between acetone and HT (p < 0.001)
 - ° R² = 0.04 (explains 4% of the variability in acetone concentrations)

Results of Multiple Regression Analysis

- Acetone = $2.43*[HT^{0.371}]*[OC^{0.308}]$
- p < 0.001
- Adjusted multiple R² = 0.22 (explains 22% of the variability in acetone concentrations)
- Holding time and organic carbon concentrations account for some of the variation in acetone concentrations
- Much of the variability remains unexplained
- Other variables may also influence acetone concentration

Conclusions

- Acetone production appears related to organic content and may result from oxidation of natural occurring waxes or humic material
- If acetone is a potential site contaminant sodium bisulfate should not be used
- Freezing of samples may be a preferred alternative

Recommendations

- EPA reevaluate the appropriateness of sodium bisulfate
- Study of plant material and aliphatic hydrocarbons

