Explosives in Groundwater within an Impact Area at the Massachusetts Military Reservation

Jay Clausen (Ogden) Marc Grant (Ogden) Ben Gregson (MAARNG)

Site Location

Purpose

Has training with artillery and mortar weapon systems had an impact on groundwater at Camp Edwards (past, present, future)?

Camp Edwards History

- Training and Impact Areas used since 1911
- Designed to house 30,000 troops during WWII
- Records for 1989 indicate 6456 mortar practice and HE rounds and 1799 artillery practice rounds fired into the Impact Area
 - munitions usage could have been 200 times higher during wartime

Camp Edwards Hydrogeologic Model

Groundwater flow is radial from a mound to the southeast of the Impact Area in the J Range Area

Camp Edwards Lithology

Explosive Fate-and-Transport Conceptual Model

- Deposition of particulates to ground surface
- Slow dissolution of particulates
- Once in solution rapid movement through unsaturated zone leaving little residual contamination (RDX and HMX)
- Rapid groundwater transport away from source

RDX Distribution Hypothesis

- Shallow surface soil detections reflect presence of solid particulates
 - evidence of soil concentrations in excess of RDX solubility limit
- Absence of RDX in deeper soil may be the result of:
 - very small spatial footprint
 - dissolved RDX only present in wetting front
 - the amount of RDX residual in solution is inconsequential compared to the total volume of soil
- RDX present in groundwater

Soil Results

Explosive Distribution in Surface Soil

Explosive Distribution In Groundwater

Plan View of RDX Detections in the Impact Area

Inner Groundwater Transect within the Impact Area

Outer Groundwater Transect within the Impact Area

Longitudinal Cross-Section through the Impact Area

Possible Source Terms

Findings

- RDX and HMX present in surface soil immediately adjacent targets
- RDX and HMX present in groundwater downgradient of targets
- TNT is largely degraded before reaching groundwater

Conclusions

- Training using artillery rounds (UXO, low/high-order detonation, or both) appears to have resulted in an impact to groundwater
- Training with mortar rounds and its impact on groundwater is pending
- MMR findings are potentially applicable to other bombing ranges and battlefields

