

Innovative Options for Ex-Situ Removal of Perchlorate and Explosives in Groundwater

National Defense Industry Association 30th Environmental and Energy Symposium and Exhibition

April 7, 2004

Innovative Technology Evaluation (ITE) Team

- Army National Guard
- Army Environmental Center
- Army Corps of Engineers
- AMEC Earth and Environmental

Acknowledgements

- Shaw Environmental & Infrastructure, Inc.
- US Filter Corporation
- Pennsylvania State University (PSU)
- The Purolite Company
- DL Maher (div. of Boart Longyear, Inc.)

ITE History and Mission

- History Impact
 Area and Ranges at
 Site used for
 training since 1911
- Mission Evaluate innovative remediation technologies to treat low levels of perchlorate and explosives in soil and groundwater

Ex Situ Groundwater Treatment Technology Evaluation

Technologies evaluated

- Fluidized Bed Bioreactor (FBBR)
- Granular Activated Carbon (Standard GAC)
- Granular Activated Carbon tailored by the addition of a proprietary cationic monomer (Tailored GAC)
- Ion Exchange Resin (IX Resin)

Site Contaminant and Aquifer Characteristics

Parameter	Area #1	Area #2	Area #3	Area #4
Perchlorate (µg/L)	100	5	1	1
RDX & HMX (µg/L)	200	0	6	0
Nitrate as N (mg/L)	2.2	<0.12	0.05	0.1
Sulfate (mg/L)	4.6	6.1	4.4	5.0
Chloride (mg/L)	7.6	7.9	7.2	8.7
Total Organic Carbon (mg/L)	<1.0	<1.0	0.59	0.68
Orthophosphate as P (mg/L)	<0.2	<0.2	<0.2	<0.2
Iron (mg/L)	<0.5	<0.5	<0.5	<0.5
рН (S.U.)	5.8	6.3	5.4	5.7
Dissolved Oxygen (mg/L)	9.8	9.4	10.6	9.2

Fluidized Bed Bioreactor Overview

FBBR experience

- °In use at DoD and commercial sites Longhorn AAP (TX), Aerojet (CA)
- °Vendor Shaw Environmental & Infrastructure, Inc.
- °Prior demonstration at lab scale on TNT but not RDX

FBBR study

- °Bed medium (GAC)
- °Biomass
- °Nutrient substrate
- °Nutrients (N, P)
- °pH control
- °Fluidization control

FBBR Area #1 Study Results

FBBR Area #2 Study Results

FBBR A (Acetic Acid) Effluent Perchlorate vs. Time

FBBR Study Conclusions

- Area #1 Study (Perchlorate and RDX)
 - °Perchlorate degraded to <1.0 µg/L at Hydraulic Retention Time (HRT) of 35 min.
 - °RDX degraded to <2 µg/L at HRT of 80 min.
- Area #2 Study (Perchlorate alone)
 - °Perchlorate degraded to <1.0 μg/L at HRT of 16 min.
 - °Addition of nitrate is required when perchlorate and other electron acceptors are low.

Granular Activated Carbon (Standard GAC)

- GAC an old friend to water treatment, used on explosives
- Theory
 - ° Contaminants held onto carbon surface via adsorption
 - Contaminants removed but not destroyed
 - Initial Breakthrough after carbon's capacity is exhausted, levels in effluent are above detection limits
 - Rapid Small Scale Column Tests (RSSCTs) predict performance of a full-scale system
- Goal Can Standard GAC remove perchlorate from groundwater at very low concentrations?
- Test RSSCTs to find how much groundwater can be processed before breakthrough
 - ° Carbon provided by US Filter
 - Tests performed by PSU (Dr. Fred Cannon, Bob Parette)

Standard GAC RSSCTs

Parameter	Test #1	Test #2	Test #3	Test #4	Test #5
Source Study Area	#4	#1	#1	#1	#3
Perchlorate (µg/L)	1	5	5	5	1
Influent RDX (μg/L)	0	0	0	0	5.5
Influent HMX (µg/L)	0	0	0	0	0.5
EBCT (min)	20	5	7	20	10
BV to Perchlorate BT	30,000	15,000 to 25,000	20,000	20,000 to 24,000	40,000 to 46,000
BV to RDX BT	N/A	N/A	N/A	N/A	308,000
Effective Bed Life (mo)	1 13	2	3-4	9-11	9-10

EBCT = Empty Bed Contact Time BV = Bed Volumes

BT = Breakthrough

¹ Effective Bed Life = time between media change-outs (months)

Modified Granular Activated Carbon (Tailored GAC)

- Theory Increasing number of positive charges on GAC surface improves perchlorate adsorption
- Goal Can modified GAC offer an economical alternative to conventional GAC?
- Test Preload the GAC with organic monomer with a strong positive charge (Tailored GAC)
 - Tests performed by PSU (Dr. Fred Cannon, Bob Parette)
- Materials Proprietary cationic monomer NSF approval is pending

Tailored GAC RSSCTs

Parameter Source Study Area	Test #6 #2	Test #7 #3	Test #8 ³ #3
Perchlorate (µg/L)	5	1	1
Influent explosives (µg/L)	0	6	6
EBCT (min)	5	9	9
BV to Perchlorate BT	77,000 to 170,000	270,000	270,000
BV to RDX BT	N/A	8,000	308,000
Effective Bed Life (mo) 1	9 - 19	56 ²	56

EBCT = Empty Bed Contact Time BV = Bed Volumes

BT = Breakthrough

¹ Effective Bed Life = time between media change-outs (months)

² Bed Life applies only to perchlorate treatment, not RDX treatment

³ Test #8 combines results from Tests #5 & #7 (2 columns: 1 Tailored GAC, followed by 1 Standard GAC)

RSSCT Results & Conclusions

- For 5 μg/L perchlorate in groundwater
 - Standard GAC operational life is 3 4 months (10-minute EBCT)
 - °Tailored GAC operational life is ~ 20 months (5- minute EBCT)
- For 1 μg/L perchlorate and 6 μg/L explosives in groundwater
 - Standard GAC operational life is ~ 9 months (10-minute EBCT)
 - °Tailored GAC followed by Standard GAC operational life is ~ 56 months (8.5-minute EBCT)
- Sorption differences
 - °Standard GAC very effective for explosives, slightly effective for perchlorate
 - ^o Tailored GAC very effective for perchlorate, ineffective for explosives

Ion Exchange Resins (IX Resins)

- Theory Anions held to a +charged surface are exchanged for other anions. These IX resins do not remove explosives/other neutral species
- Test Field studies using Type I Styrenic Resins & Nitrate-Selective Resins
- Perchlorate Selective Resins evaluated, but appear to have similar effective bed life to Nitrate-Selective Resins for treating perchlorate at the site, at higher expense
- Materials Purolite A520E, Purolite A600E are NSF approved for use in water supply

Ion Exchange **Resin Beads** Courtesy of The Purolite Company

Field Study - Tailored GAC, IX Resins

- Goal #1 Is Tailored GAC effective at field scale?
- Goal #2 How much will monomer leach from Tailored GAC?
- Goal #3 Will a "polishing" GAC vessel capture leached monomer?
- Goal #4 Can IX resins treat low concentrations of perchlorate?

Field Study - Tailored GAC, IX Resins

Media	Tailored GAC	N – S Resin	T1 - S Resin	
Source Study Area	#2	#2	#2	
Perchlorate (µg/L)	3	3	3	
Explosives (µg/L)	0	0	0	
EBCT (min)	5	5	5	
Bed Volumes to date	21,000	21,000	21,000	
Predicted Bed Volumes	>150,000	72,000	15,000	
Predicted Bed Life (mo) ¹	> 16	> 8	> 1.5	
N. C Nitrata Calactiva ian ayahanga rasin				

N-S = Nitrate Selective ion exchange resin T1-S = Type I Styrenic ion exchange resin EBCT = Empty Bed Contact Time BV = Bed Volumes

¹ Predicted Bed Life = time between change-outs (months)

Field Study: Tailored GAC and lon Exchange Treatment

2 Polishing Vessels Vessels for Tailored GAC Unit

ls Final Polishing Vessels

ITE Field Study Results & Conclusions

- Initial effluent from a Tailored GAC unit contains < 1 mg/L monomer; after one month < 0.1 mg/L.
- Preliminary: The Nitrate Selective Resin will likely remove perchlorate using an EBCT of 5 minutes, for an operation bed life of ~ 8 months.
- Preliminary: The Type I Styrenic Resin will likely remove perchlorate using an EBCT of 5 minutes, for an operation bed life of ~ 2 months.

Implementation Cost Comparison

Treatment	Comparative	
Scenario	Cost	
5 μg/L perchlorate		
° Standard GAC	2x	
° Tailored GAC	1.5X	
° Nitrate Selective IX Resin	4x	
1 μg/L perchlorate, 6 μg/L explosives		
° Standard GAC	1X	
° Tailored GAC¹	2X	
° Nitrate Selective IX Resin	4X	

Assumptions:

- Costs are for media only, except for Tailored GAC, where extra analytical costs are added. If monomer is NSF approved, costs are reduced by 0.5X
- 1 Tailored GAC system requires extra Standard GAC vessel to treat explosives

ITE Study Recommendations

- Standard GAC can treat very low concentrations of perchlorate
- Standard GAC can be especially effective when explosives are present in addition to perchlorate
- Ion Exchange Resins can treat low concentrations of perchlorate to very low treatment goals.
- Tailored GAC may be an economical alternative to ion exchange resins. Further work to obtain NSF approval should be pursued.
- Applicability of ITE results to other sites is dependent on site characteristics -- RSSCTs, field studies recommended

References and Resources

- AMEC Earth & Environmental, Inc.
 - ° Katy Weeks katherine.weeks@amec.com
 - <u>Scott Veenstra</u> scott.veenstra@amec.com
- Shaw Environmental and Infrastructure, Inc.
 - ° Paul Togna paul.togna@shawgrp.com
 - ° Bill Guarini william.guarini@shawgrp.com
- Pennsylvania State University
 - ° Dr. Fred Cannon fcannon@psu.edu
 - ° Bob Parette rbp122@psu.edu
- US Filter
 - ° Dr. James Graham GrahamJ@USFilter.com
 - ° Tim Peschman PeschmanT@USFilter.com
- The Purolite Company
 - ° Tedd Begg tbegg@puroliteUSA.com
 - ° Francis Boodoo fboodoo@puroliteUSA.com