

Evaluation of Innovative Soil Remediation Technologies at Camp Edwards, MMR

NDIA 28th Environmental & Energy Symposium

March 27, 2002

Presented by:

Katherine Weeks, Scott Veenstra

Innovative Technology Evaluation Team (ITE)

- Army National Guard
 - LTC Joe Knott, Ben Gregson, Dave Hill

- Army Corps of Engineers
 - Output
 Output
 Output
 Description
 Output
 Description
 Output
 Description
 Output
 Description
 Output
 Description
 Description
 Output
 Description
 Description<
- Army Environmental Center
 - Wayne Sisk, Mark Hampton
- AMEC Earth and Environmental

Massachusetts Military Reservation (MMR)

- Located on Cape Cod
- Central Impact Area, training ranges used for target practice and range training operations
- Covers >14,000 acres
- Surface soils
 - ° Glacial end moraine
 - Fine sand boulders, little clay
 - ° pH 5.5 to 6.0
 - ° Thin layer of organics

Explosives Residues in Soils at MMR

- Explosives deposition attributes
 - Deposited in particulate form from live fire training
 - Low concentrations
 - Heterogeneously distributed
- Soil Cleanup Goals are low to support groundwater protection
 - ° RDX 120 µg/kg
 - ° HMX 250 µg/kg
 - ° TNT 250 µg/kg

ITE Mission

- Support responses to EPA Administrative Orders to protect groundwater at MMR
- Select innovative soil and groundwater remediation technologies to address explosives contamination at MMR
- Future applications at other DoD/ARNG training installations

Treatability Study Technology Selection

- Selection criteria
 - Media treated soils
 - Experience with explosives
 - ° Clean-up levels achieved
 - ° Time frame to complete clean up
- Vendors chosen based on competitive bid proposals

Treatability Study Technology Selection

- Physical Processes
 - ° Soil Washing
 - ° Low Temperature Thermal Destruction
- Biological Processes
 - ° Composting
 - ° Solid Phase Bioremediation
 - ° Bioslurry
- Chemical Processes
 - ° Chemical Oxidation
 - ° Chemical Reduction

Treatability Study Technologies

amec

Treatability Study Technologies

Treatability Study Technologies

ITE Treatability Study Conclusions

- LTTD Effective at temperatures ≥ 250°C on washed & unwashed soils
- Composting Effective in washed soils, not unwashed soils
- Solid phase bioremediation Effective in washed soils and in one of two unwashed soil studies
- Bioslurry Effective in intermittently stirred reactors on washed & unwashed soils
- Chemical Reduction Effective on washed soils
- Chemical Oxidation Not effective on washed soils

ITE Field Scale Designs

- In situ / ex situ:
 - In situ treatment favors composting or solid phase bioremediation
 - ° However, UXO removal requires ex situ solutions
 - Once ex situ is required, soil washing becomes attractive as a stand-alone or first step
- New England climate limits biological remedies to three seasons, unless structures are built

ITE Field Scale Designs

- Soil Washing 10 tons/hr, ≥ 75% soil treated
- LTTD Heating rods in concrete containers, extract vapors from rods, run vapor through GAC
- Composting Windrows of 30% soil, 70% amendments, using hen and dairy manure
- Solid phase bioremediation Soil windrows with 2% DARAMEND®, 0.2% powdered iron
- Bioslurry 135-ton mixing tank: 30% soil, 70% water,
 1 drum molasses
- Chemical Reduction Watered soil windrows with 5% ZV iron, aluminum sulfate, acetic acid

ITE Field Demonstration Costs

ITE Next Steps

- Assess applications for ITE field demonstration at MMR
- Perform detailed design and planning for field demonstrations including scale-up costs
- Select technologies for field demonstration (i.e., based upon specific applications and scale-up costs)