

Distribution and Fate of Energetics on DoD Test and Training Ranges

CP-1155

Judith C. Pennington

U.S. Army Engineer Research and Development Center Environmental Laboratory

PERFORMERS

- Drs. Judith C. Pennington, James M. Brannon U.S. Army Engineer Research and Development Center Environmental Laboratory, Vicksburg, MS
- Dr. Thomas F. Jenkins
 U.S. Army Engineer Research and Development Center
 Cold Regions Research and Engineering Laboratory, Hanover, NH
- Dr. Sonia Thiboutot
 Defence Research Establishment Valcartier, Canada
- Mr. John E. Delaney
 Navy Explosives Ordnance Disposal Technology Division, Indian Head, MD
- Mr. Jay Clausen
 AMEC Earth & Environmental, Inc., Westford, MA

TECHNICAL OBJECTIVE

Provide techniques to assess the potential for groundwater contamination from residues of energetic materials (TNT, PETN, NG, RDX, and HMX) at test and training ranges.

Environmental Research

Evaluating EnergeticsContamination

- Determine what energetics can be expected from specific range activities
- Determine what distribution and concentrations of energetics are associated with specific range activities
- Develop a scientifically appropriate sampling regime to overcome site heterogeneities
- Determine effects of climate/geology on transport potential

Fate and Transport

- Review existing data and identify data gaps in process descriptors
- Determine appropriate descriptors in the laboratory

 - Dissolution kinetics
 Partitioning coefficients
- Transformation rates

- Adsorption kinetics
 Desorption kinetics
- Degradation rates

Environmental Research

Controlled Detonations

High order detonations

- Confined and unconfined
- Comparison of residues from detonations using C4 and shape charges
- Residues on snow

Low order detonations

- Various degrees based on energy yield
- Confined and unconfined

Unconfined charges

- Detonation of specific mass and shapes of 5 munitions
- Fixed mass/shape with various initiations (C4, shape charges, direction of detonator)

Firing Range Source Term

- Historical firing records
- Dud and low order rates
- Actual range data

Comparisons to Findings at Massachusetts Military Reservation

Typical or unique?

Improving Mission Readiness Through Environmental Research

Field Sampling to Date

Fort Lewis, WA

- Heavy artillery range
- Hand grenade range
- Heavy artillery firing points
- Groundwater monitoring wells
 Yakima Training Center, WA.
 - Impact craters
 - Heavy artillery
 - Antitank
 - Firing points
 - Heavy artillery
 - Antitank range
 - 120-mm tanks
 - Mortars
 - Surface water
 - Water supply wells
 - Claymore mine

Camp Guernsey, WY

- Heavy artillery ranges
- Heavy artillery firing points
- Demolitions "blow-in-place"
- Surface water

Shilo Canadian Force Base

- Unconfined charge
- Range sampling
- Hand grenade ranges
 - Fort Leonard Wood, MO
 - Fort Wayne Wright, AK
 - Fort Richardson, AK
 - Camp Bonneville, WA

Fate and Transport

Improving Mission Readiness Through Environmental Research

Octol: 70% HMX, 30% TNT Comp B: 59.5 % RDX, 39.5% TNT, 1% wax LX-14 95.5% HMX, 4.5% Estane

Mean of 3 replicates at 20 °C and 150 rpm stirring rate

Source: LTC Jason Lynch and Dr. James M. Brannon, Florida State University and U. S. Army Engineer R& D Center Environmental Laboratory, respectively

Conclusions To Date

- Firing Points: Potential for propellant residues
- <u>Impact Craters from High Order Detonations</u>: Concentrations relatively low
- Low Order Detonations: Very high local concentrations; potential point source of contamination
- Grenade Ranges: Relatively high concentrations; relatively uniformly distributed (On a mass loading basis, may be the most significantly contaminated location.)
- <u>Sampling:</u> Compositing will be necessary to obtain representative samples
- <u>Subsampling:</u> Proper subsampling is essential for obtaining representative samples
- Analysis: Method 8330 is inadequate for artillery range characterization where concentrations are typically low ppb; Method 8095 more appropriate (dl=1ppb)

Environmental Research

Applications

Examples of range management practices that may be suggested for sustained range use

- Locate and remove low order detonations and duds
- Periodically remediate surface soils of hand grenade ranges
- Develop a groundwater monitoring plan and contingency plans

