Camp Edwards Training Impacts Presentation

Today's Presentation

- Introduction
- Soil Results
- Groundwater Results
- Preliminary Findings/ Recommendations

Has training with artillery and mortar weapon systems had an impact on groundwater at Camp Edwards past, present, future

Site Location

wassachusetts willtary Reservation

Camp Edwards History

- Training and Impact Areas used since 1911
- Designed to house 30,000 troops during WWII
- Records for 1989 indicate 6456 mortar practice and HE rounds and 1799 artillery practice rounds fired into the Impact Area
 - munitions usage could have been 200 times higher during mobilization

Hydrogeologic Model

Groundwater flow is radial with the mound to the southeast of the Impact Area in the J Range Area

Camp Edwards Lithology

MMR Explosive Fate-and-Transport Conceptual Model

- Deposition of particulates to ground surface
- Slow dissolution of particulates
- Rapid movement of dissolved explosives through unsaturated zone, leaving little residual contamination (RDX and HMX)
- Introduction to groundwater results in rapid transport away from source
- Based on review of over 200 papers, reports, etc. on the F&T of explosives

Today's Presentation

- Introduction
- Soil Results

Phase I Soil Results

Phase II Soil Results

Selected Artillery and Mortar Target Soil Sample Locations

Phase II Target Soil Sample RDX Results

Phase II Soil Results at Artillery Target 13

- Composite Only (ppm)
- Discrete & Composite (ppm) Depth = inches

Phase I/II Soil Sampling Differences

- Lack of explosives in Phase I soil samples may be explained by:
 - 30 x 30 ft grids with 9 pt composite
 - samples collected from 0 6 and 18 24 "
 - samples not collected immediately adjacent to targets
- Phase II soil samples:
 - focused immediately around targets
 - utilize 22 x 22 ft grids, with 5 pt composite
 - collected from 0 3, 3 6, and 6 12 "

Today's Presentation

- Introduction
- Soil Results
- Groundwater Results

Phase I Groundwater Results

Phase II Groundwater Results

Location of Groundwater Transects within the Impact Area

Inner Groundwater Transect

Outer Groundwater Transect

Plan View of RDX Detections in the Impact Area

MMR Possible Source Terms

Potential Contaminant Migration Over Time

Differences Between Current and Past Conceptual Model

- Absence of Phase I surface soil contamination
 - suggests training was not the source of RDX in groundwater
- Presence of explosives in surface soils at artillery and mortar targets during Phase II
 - suggests training may be a contributing source of RDX to groundwater

MMR RDX Distribution Hypothesis

- Shallow surface soil detections reflect presence of solid particulates
 - evidence of soil concentrations in excess of RDX solubility limit at MMR
- Absence of RDX in deeper soil may be the result of:
 - very small spatial footprint
 - dissolved RDX only present in wetting front
 - amount of RDX residual in solution is inconsequential compared to total volume of soil
- RDX present in groundwater at MMR

Today's Presentation

- Introduction
- Soil Results
- Groundwater Results
- Preliminary Findings/Recommendations

MMR Preliminary Findings

- RDX and HMX present in surface soil adjacent to artillery and mortar targets
- RDX and HMX present in groundwater downgradient of primary target area (i.e. Tank Alley) within the Impact Area
- TNT which is a component of the munitions appears to be degraded before reaching groundwater

MMR Preliminary Findings (Continued)

- Training using HE artillery rounds (UXO, detonation, or both) appears to have resulted in an impact to groundwater at MMR
- Training with mortar rounds may have impacted groundwater at MMR

Ongoing/Planned Activities

- Conduct laboratory experiments to define Camp Edward specific fate-andtransport parameters (Funded)
- Conduct fate-and-transport modeling (Funded)
- High-Use Target Area investigations (Funded)
- Additional monitoring well installation/ sampling (Funded/Planned)
- Additional Soil Sampling (Planned)

Next Step

- Seek DOD guidance
- Prepare public affairs/community involvement plan for public presentation
- Range maintenance