INNOVATIVE TECHNOLOGY EVALUATION PROGRAM REVIEW

October 23, 2003

Jay Clausen, Katherine Weeks, and

Scott Veenstra - AMEC Earth & Environmental

ITE Background

- Team established in 2000 by Impact Area Groundwater Study Program (IAGWSP)
- Voluntary efforts outside response to EPA Administrative Orders
- Mission:
 - Identify and evaluate innovative remediation technologies to address low levels of PEP-type contamination
 - Recommend technologies for implementation at contaminated sites on Camp Edwards/MMR
 - Support future application at other DoD/ARNG training installations
- Early studies predated perchlorate concerns perchlorate added to scope of efforts in 2001

ITE Soil Treatment Experience - Explosives

- Explosives contaminant isolation via soil washing (field scale)
 - Volume reduction of 75 90 %
 - Reduced volume requiring secondary treatment or off-site disposal
- Successful explosives contaminant destruction (bench scale)
 - Chemical reduction, using zero valent iron
 - Solid phase bioremediation
 - Bioslurry
 - Low temperature thermal desorption / destruction
- Lessons Learned:
 - Composting not effective on particulate form of explosives encountered at training range
 - Chemical oxidation not as successful
 - Deposition of explosives from training significantly different than explosives in process washout at manufacturing sites

Early ITE Groundwater Treatment

 Perchlorate studied but total destruction not a goal (until 2001)

Successes

Cometabolic reduction (in situ) – degraded explosives, Positive indications of perchlorate degradation.

Lessons learned

- Chemical oxidation not effective on explosives destruction treatment at other sites has met with varied success / failure
- Chemical oxidation not effective on perchlorate destruction, as predicted by chemistry
- In-situ technologies not suitable for MMR as technologies can reduce but not eliminate contamination in a cost-effective manner

Recent ITE Groundwater Treatment Biological Fluidized Bed Reactor (BFBR)

- Study #1 (Perchlorate 100 μg/L, RDX 190 μg/L)
 - ° Perchlorate <1.0 µg/L, HRT = 35 min.
 - $^{\circ}$ RDX <2 μ g/L, HRT = 80 min.
- Study #2 (Perchlorate 3–6 μg/L)
 - Perchlorate <1.0 μg/L,
 HRT = 16 min.
 - Nitrate addition required when water is low in natural electron acceptors.
 - Acetic acid substrate successful. Molasses and ethanol degrade perchlorate, but not to below 1.0 µg/l.

ITE Groundwater Treatment BFBR (continued)

Study #1 (Perchlorate at 100 µg/L, RDX at 190 µg/L)

ITE Groundwater Treatment BFBR (continued)

RDX Concentrations on GAC

Sample Location within Reactor	RDX - End of Phase 1 (mg/kg GAC)	RDX - End of Phase 2 (mg/kg GAC)	RDX - End of Phase 3 (mg/kg GAC)
FBR A - Top	309	4	4
FBR A - Bottom	330	3	4
FBR B - Top	590	626	784
FBR B - Bottom	728	558	545
FBR C - Top	591	558	1019
FBR C - Bottom	641	718	888

Note: Reactor A = Acetic Acid, Reactor B = Molasses, Reactor C = Control

ITE Groundwater Treatment BFBR (continued)

ITE Groundwater Treatment Granular Activated Carbon (GAC)

Rapid Small Scale Column Tests (RSSCTs)

- Laboratory scale studies predict full-scale system performance
 - Predict how many bed volumes (BVs) of groundwater can be processed through GAC before the contaminant breaks through.
 - Estimate design hydraulic loading rates
 - Optimize empty bed contact times (EBCTs)
- RSSCT scaling per Crittenden studies (1989)
 - $^{\circ}$ EBCT_{Small Column} / EBCT_{Large Column} = D_{SC} / D_{LC}
 - V_{SC} / V_{LC} = (D_{LC} / D_{SC})*(Re_{SC}, min / Re_{LC})
 (D = Diameter of particles, V = Velocity, Re = Reynolds number)
- For perchlorate studies at MMR
 - ° Grain size: full-scale = #8 x #30 mesh, RSSCT = #200 x #400 mesh
 - ° EBCT: full scale = 20 minutes, RSSCT = 0.9 minutes
 - PRSSCTs can model 22 days of full scale operations in 1 day

ITE Groundwater Treatment Granular Activated Carbon (GAC)

RSSCTs on Groundwater - Perchlorate at 1 μ g/L

° Virgin Ultracarb: 30,000 BV @ 20 min EBCT

RSSCTs on Groundwater - Perchlorate at 3-6 µg/L

- ° Virgin Aquacarb: 24,000+ BV @ 20 min EBCT
- ° Virgin Aquacarb: 25,000 BV @ 7 min EBCT
- ° Virgin Ultracarb: 20,000 BV @ 20 min EBCT
- Virgin Ultracarb: 15,000 BV @ 5 min EBCT
- Polymer on Ultracarb: 23,000 BV @ 5 min EBCT
- ° Monomer on Ultracarb: 77,000+ BV @ 5 min EBCT
- Monomer on Ultracarb that had been exhausted before tailoring: 67,000 BV @ 5 − 7 min EBCT

Current Efforts – GAC & Ion Exchange Resins

- Field study completed April 2003
 - GAC treatment of perchlorate at 1 μg/L
- Field study Jan Jul 2004 (perchlorate at 3 6 μ g/L)
 - Type 1 Styrene Ion Exchange Resin
 - Nitrate selective Ion Exchange Resin
 - Monomer-amended GAC
- RSSCTs on perchlorate and explosives
 - ° GAC
 - Monomer-amended GAC
 - No Ion Exchange Resins not effective on explosives
 - Monomer-amended GAC chased by GAC

Application of ITE Findings

- BFBR designed for Frank Perkins Road treatment system to address explosives and perchlorate
- GAC accepted by MA DEP and Town of Bourne for wellhead treatment of perchlorate
- GAC designed for Pew Road treatment system to address perchlorate at 3 – 6 μg/L
- 6-month field pilot study to determine best-value media for Pew Road treatment system (may replace GAC in future)
- USACE/NGB can evaluate technologies early in process
- ITE program has identified best value technologies to meet the needs of the on-going treatment efforts at MMR
- Technology transferable to other DoD sites