

CAMP EDWARDS, MASSACHUSETTS MILITARY RESERVATION IMPACT AREA GROUNDWATER STUDY PROGRAM

INNOVATIVE TECHNOLOGY EVALUATION PROGRAM December 13, 2000

Katy Weeks Project Engineer

Innovative Technologies at MMR

- Who:
 - Initiated by the National Guard Bureau
- What:
 - Review of innovative remediation technologies
 - Testing of technologies that may be effective at MMR
- Why:
 - Remediation of explosives in soils and groundwater at MMR
- How:
 - Select technologies that are innovative and have had some experience with explosives
 - Conduct treatability studies
 - Select successful technologies for field demonstration

ATTONAL CONTRACTOR

MMR IAGWSP

Today's Presentation

- Soil Remediation Technologies
 - Technologies currently under study
 - Technologies slated for treatability studies
- Groundwater Remediation Technologies
 - Technologies under evaluation for treatability studies

Soil Remediation Technologies - Under Study

- Soil Washing: ex-situ process
 - Actually a volume reducing technology
 - Isolates and segregates fractions of soil containing most of the contaminants
 - Segregation techniques similar to mining processes
- Bioslurry: ex-situ process
 - Creates a wet environment (70 to 80% water) and adds a nutrient, such as molasses, to the soil
 - Molasses helps naturally occurring micro-organisms grow
 - Flourishing micro-organisms eat contaminants as well as nutrients

Soil Remediation Technologies (continued)

Soil Washing at MMR

Photo courtesy of Brice Environmental Services Corp.

Soil Remediation Technologies - Slated for Study

- Composting: in-situ or ex-situ
 - Similar to composing in your back yard
 - Adds locally available nutrients, such as cranberry mash
 - Adds bulking agents, such as wood chips
- Solid phase bioremediation: in-situ or ex-situ
 - Adds a proprietary additive made from plant fibers

Soil Remediation Technologies (continued)

- Chemical oxidation: ex-situ
 - Uses chemicals such as hydrogen peroxide
 - Oxidation destroys contaminants
- Chemical reduction: ex-situ
 - Uses materials such as iron filings
 - Reduction destroys contaminants
- Thermal desorption/destruction: in-situ
 - Slowly heats soil, like in an electric oven at home
 - Contaminants thermally degrade or volatilize (evaporate); removed from sealed cover

Soil Remediation Technologies (continued)

Thermal Desorption/Destruction

Photo courtesy of TerraTherm, Inc.

- Chemical oxidation: in-situ
 - Uses oxidants such as hydrogen peroxide or permanganate
 - Injected directly into the groundwater
 - Quickly degrades contaminants via chemical oxidation
- Redox manipulation: in-situ
 - Uses easily degraded nutrient such as molasses, or a form of lactic (as found in milk) acid
 - Injected directly into the groundwater
 - Enhances growth of naturally occurring micro-organisms, which then eat the contaminants as well as the nutrients

Innovative Technology Evaluation Schedule

- Soil Treatability Studies
 - Soil Washing complete; analyses of results pending
 - Bioslurry still in process
 - Composting, solid phase bioremediation, thermal desorption/destruction, chemical oxidation, chemical reduction to start circa January 2001
- Groundwater Treatability Studies
 - Chemical oxidation and redox manipulation to start circa February 2001

- Currently researching several technologies
 - Remediation of soils
 - Remediation of groundwater
- Will choose most appropriate technology
 - Most efficient and effective
 - Environmentally friendly
- Will keep media and public informed of progress