

USE OF OPTIMIZATION MODELING FOR DESIGN OF THE DEMO 1 SITE WELL FIELD

Al Laase (AMEC)

Presented at the 2/5/02 IAGWSP Modeling meeting to the USEPA, MADEP, USACE, NGB, USGS, Jacobs Eng, and AEC (IAGWSP Contact Dave Hill 508-968-5621).

DEMO 1 SITE PLUME

- Mile long
- 600 feet wide
- 100 feet thick
- Up to 200 feet below ground surface
- Contains dissolved explosives and Perchlorate

DEMO 1 SITE WELL FIELD DESIGN CRITERIA

- Contain contamination
- Remove contamination within specified time criteria

OPTIMIZATION CODE

 Because time is a design criteria, particle tracking optimization was selected for well field design

IMPLEMENTING PARTICLE TRACKING OPTIMIZATION

- Identify potential well locations; assign initial pumping rates and weights
- Identify injection well locations
- Assign drawdown and maximum and minimum pumping rate criteria

IMPLEMENTING PARTICLE TRACKING OPTIMIZATION

 Locate particles to be captured

Assign particle weights and capture times

Define percentage of particles requiring capture

PARTICLE WEIGHTS

Weight particles to reflect contaminant mass

PARTICLE CAPTURE TIMES

- Large capture times result in containment designs
- Small particle capture times result in decreased pore volume removal rates
- Mixing large and small particle capture times results in designs for both containment and hot spot removal

PARTICLE CAPTURE REQUIREMENTS

- Percentage particles requiring capture
- Percentage of particles captured within a specified time

PARTICLE TRACKING OPTIMIZATION

PARALLEL COMPUTER CODE

- Particle-tracking optimization is computer intensive
- Can run the particle-tracking optimization algorithm in parallel on a network of computers
- Run times are reduced by a factor of 1/n, where n = the number of computers available

APPLICATION TO DEMO 1 SITE

Designs

- 1. Containment
- 2. 10-Year Removal

Constraints

1. Optimize for removal of all COCs

DEMO 1 SITE PARTICLE WEIGHTS

DEMO 1 SITE PARTICLE CAPTURE TIMES

For containment design, all particles assigned 100 million day capture time criteria

For the 10-year
 assigned cap
 volumes requestandards

PORE VOLUMES

 $n = In(C_S/C_i)/In(1-1/R)$

where:

n = number of pore volumeachieve standard

C_s = groundwater standard

C_i = initial concentration

R = retardation factor

(Duetsch 1997)

COMPARISON OF PORE VOLUMES REQUIRING REMOVAL TO ACHIEVE STANDARD

Contaminant	Initial Concentration ug/L	Groundwater Standard, ug/L	Retardation Factor	Pore Volumes Requiring Removal to Achieve Standard	Required Days to Remove 1 Pore Volume for 10-Year Cleanup
RDX	100	0.20	1.17	3.22	1133
TNT	100	0.20	2.07	9.42	388
Perchlorate	100	0.35	3.14	14.75	247
2,4-DNT	100	0.20	16.51	99.46	37

LAYER 1 – PORE VOLUMES amec[©] REQUIRING REMOVAL TO ACHIEVE STANDARD

Contaminant Controlling Removal Rate

LAYER 6 – PORE VOLUMES amec[®] REQUIRING REMOVAL TO ACHIEVE STANDARD

RDX
Perchlorate

Contaminant Controlling Removal Rate

_	Screen Length, ft	Unit Stimuli, gpm	Minimum Q, gpm	Maximum Q, gpm
	80	160	99	258

DEMO 1 SITE CONTAINMENT DESIGN POTENTIAL WELL LOCATIONS

- Well 1
- Well 2
- Well 3
- Well 4
- Well 5
- Well 6
- Well 7

DEMO 1 SITE CONTAINMENT DESIGN MASS CAPTURE RESULTS

- Well 1 100.00%
- Well 2 99.97%
- Well 3 96.12%
- Well 4 77.33%
- Well 5 66.46
- Well 6 44.54%
- Well 7 22.70%

DEMO 1 SITE CONTAINMENT DESIGN OPTIMAL WELL LOCATION AND PUMPING RATE

• ? 160 gpm

DEMO 1 SITE 10-YEAR REMOVAL DESIGN POTENTIAL WELL LOCATIONS

Screen Length, ft	Unit Stimuli Q, gpm	Minimum Q, gpm	Maximum Q, gpm
10	10	4	26
20	20	8	52
30	30	12	78
40	40	16	104
50	50	20	130
60	60	24	156
70	70	28	182
80	80	32	208
90	90	36	234

3695 Potential Well Locations

DEMO 1 SITE
10-YEAR DESIGN
POTENTIAL WELL LOCATIONS USED
FOR DEMONSTRATION

54 Well Locations

DEMO 1 SITE 10-YEAR REMOVAL DESIGN OPTIMUM WELL LOCATIONS AND PUMPING RATES

Well	Q, gpm	Screen Length	Model Layers
1	189	90	4 - 11
2	189	90	4 - 11
3	189	90	4 - 11
4 _	182	70	2 - 8
5	52	20	1 - 2
6	141	60	1 - 6

DEMO 1 SITE 10-YEAR REMOVAL DESIGN PERCENTAGE MASS REMOVAL

DEMO 1 SITE 10-YEAR REMOVAL DESIGN CUMMULATIVE PUMPING

DEMO 1 SITE 10-YEAR REMOVAL DESIGN LAYER 1 CAPTURE TIMES

Capture Time, days.

ASYMTPOTIC RESULTS

SUMMARY

Particle Tracking Optimization:

- 1. Determines optimum well field configuration for varying contaminant removal rates
- 2. Can design well fields for removal of multiple contaminants of concern
- 3. Easy to implement