Case Study of Environmental Impacts due to Military Training Activities

Presented by

Marc A. Grant, OEES
Jay L. Clausen, OEES
Captain James Boggess, MAARNG

INVINUNVIENTAL AND ENERGT SERVICES

Location Map

Water Table & ZOCs

Nature of Usage

- Impact Area
 - Artillery Rounds
 - Mortars
 - Rockets
- Small Arms Ranges (42)
 - Rifles, Shotgun, Pistol, and Machine Guns
 - Grenades
- Demolition Areas (2)

Map of Mortar and Gun Positions

Potential Contaminants of Concern

- Nitramines (RDX, HMX)
- Nitroaromatics (TNT, DNT, tetryl, picric acid)
- Nitrate esters (PETN, nitrocellulose, nitroglycerin)
- metals (lead, copper, phosphorous)

Explosive Properties

- Crystalline solid at room temperature
- Low water solubility
- Low vapor pressure
- TNT sorbed to soil, RDX less so
- Susceptible to photolysis and biological degradation

Conceptual Cross-Section

Plan of Soil Sampling Grid

Soil Sampling Point:

Subsurface Soil and Groundwater Sampling

Typical Monitoring Well Installation

Analytical Methods for the IAGS

- Explosives Method 8330 & screening
- Metals ICP
- Volatile & Semivolatile Organics GC/MS
- Pesticides, PCBs, Herbicides GC

Preliminary Results of Soil Screening

Profiling vs. Monitoring Well Results

Analytes	Profiling (120')	Monitoring Well (114'-124')	
нмх	0.72 NJ	0.59	
RDX	2.9 J	2.5	
TNT	U	U	
1,3,5-TNB	10 J	U	
1,3-DNB	1.3	U	
NB	U	U	
4-A,2,6-NT	U	U	
2,6-DNT	0.26 NJ	U	
2,4-DNT	0.54	U	
2-NT	0.28	U N =	TENTATIVE ID
4-NT	0.53		= ESTIMATED VALUE
3-NT	0.40	U U =	NOT DETECTED

Distribution of Compounds

Groundwater Profiling Samples

Monitoring Well Samples

PDA Spectra for RDX

PDA Spectra for PETN

Explosives in Groundwater

Explosives in Soil

Soil Explosive Detects Demo Area 1

Conclusions

- Explosives contamination concentrated in Demo Area 1
- Limited explosives in groundwater elsewhere
- Limited explosives detected in soil indicate no current widespread source of groundwater contamination
- Distribution of low-level RDX and HMX in groundwater suggest multiple sources near J Ranges, Demo Area 2, and Impact Area

