MONTHLY PROGRESS REPORT #214 FOR JANUARY 2015

EPA REGION I ADMINISTRATIVE ORDERS SDWA 1-97-1019 and 1-2000-0014

JOINT BASE CAPE COD (JBCC) TRAINING RANGE AND IMPACT AREA

The following summary of progress is for the period from 1 January to 31 January 2015.

1. SUMMARY OF REMEDIATION ACTIONS

The following is a description of Remediation Actions (RA) underway at Camp Edwards as of January 2015. Remediation Actions may include Rapid Response Actions (RRA). An RRA is an interim action that may be conducted prior to risk assessments or remedial investigations to address a known, ongoing threat of contamination to groundwater and/or soil.

<u>Demolition Area 1 Comprehensive Groundwater RA</u>

The Demolition Area 1 Comprehensive Groundwater RA consists of the removal and treatment of contaminated groundwater to control further migration of explosives compounds and perchlorate. Extraction, treatment, and recharge (ETR) systems at Frank Perkins Road, Pew Road, and the Base Boundary include extraction wells, ex-situ treatment processes to remove explosives compounds and perchlorate from the groundwater, and injection wells to return treated water to the aquifer.

The Frank Perkins Road Treatment Facility has been optimized as part of the Environmental and System Performance Monitoring (ESPM) program at Demolition Area 1. The treatment facility was operating at a flow rate of 250 gpm with over 2.172 billion gallons of water treated and re-injected as of 30 January 2015. The following shut downs of the Frank Perkins Road facility occurred in January:

• Shut down on 26 January 2015 at 1503 in preparation of a snow storm and was restarted on 29 January 2015 at 1020.

The Pew Road Mobile Treatment Unit (MTU) will continue to operate at a flow rate of 105 gpm (when restarted) with over 397 million gallons of water treated and re-injected as of 23 January 2015. The following Pew Road MTU shut downs occurred in January:

- Shut down on 26 January 2015 in preparation of a snow storm. The system remained off for snow removal to access MTU; and
- Shut down on 27 January 2015 at 0240 and was restarted on 4 February 2015 at 0910.

The Base Boundary RA will continue to operate at a flow rate of 65 gpm (when restarted) with over 101.3 million gallons of water treated and re-injected as of 23 January 2015. The following Base Boundary MTU shut downs occurred in January:

• Shut down on 26 January 2015 at 1124 for system maintenance and was restarted on 26 January 2015 at 1142.

J-1 Range Groundwater RA

Southern Plant

The J-1 Range Southern Groundwater RA consists of removal and treatment of contaminated groundwater to control further migration of explosives compounds. The ETR system includes two extraction wells, ex-situ treatment process to remove explosives compounds from the groundwater, and an infiltration trench to return treated water to the aquifer.

The Southern MTU continues to operate at a flow rate of 50 gpm (EW-2 off). As of 30 January 2015, over 246 million gallons of water have been treated and re-injected. The following J-1 Range Southern system shut downs occurred in January:

- Shut down on 20 January 2015 at 1411 due to a system alarm. EW-1 was restarted on 21 January 2015 at 1125. EW-2 remains off due to potential motor damage; and
- Shut down on 26 January 2015 at 1410 in preparation of a snow storm and was restarted on 2 February 2015 at 1317. EW-2 remains off due to potential motor damage.

Northern Plant

The J-1 Range Northern Groundwater RA consists of removal and treatment of contaminated groundwater to control further migration of explosives compounds and perchlorate. The ETR system includes two extraction wells, ex-situ treatment process to remove explosives compounds and perchlorate from the groundwater, and an infiltration trench to return treated water to the aquifer.

The Northern MTU will continue to operate at a total system flow rate of 250 gpm (when restarted). As of 23 January 2015, over 129 million gallons of water have been treated and re-injected. The following J-1 Range Northern MTU shut downs occurred in January:

• Shut down on 26 January 2015 in preparation of a snow storm. The system was restarted on 3 February 2015 at 1421.

J-3 Range Groundwater RRA

The J-3 Range Groundwater RRA consists of removal and treatment of contaminated groundwater to control further migration of explosives compounds and perchlorate. The ETR system includes three extraction wells, ex-situ treatment process to remove explosives compounds and perchlorate from the groundwater and use of the existing Fuel Spill-12 (FS-12) infiltration gallery to return treated water to the aquifer.

The J-3 system is will continue operating at a flow rate of 195 gpm (when restarted). As of 23 January 2015, over 780 million gallons of water have been treated and re-injected. The following J-3 system shut downs occurred in January:

- EW-0001 was shut down on 31 December 2014 at 1527 due to power interruption and was restarted on 2 January 2015 at 1252;
- Shut down on 26 January 2015 at 1404 in preparation of a snow storm and was restarted on 29 January 2015 at 1454; and

• Shut down on 31 January 2015 at 1758 due to a system alarm. Extraction well (EW-IP1) was restarted on 5 February at 1005. Extraction wells EW0001 and EW0032 were restarted on 5 February 2015 at 1153.

J-2 Range Groundwater RA

Northern Plant

The J-2 Range Northern Treatment facility consists of removal and treatment of contaminated groundwater to control further migration of explosives compounds and perchlorate. The Extraction, Treatment, and Infiltration (ETI) system includes three extraction wells, ex-situ treatment process to remove explosives compounds and perchlorate from the groundwater, and an infiltration basin to return treated water to the aquifer.

The Northern Treatment Building will continue to operate at a flow rate of 225 gpm (when restarted). As of 23 January 2015, over 570 million gallons of water have been treated and re-injected. The following Northern Treatment Building shut downs occurred in January:

• Shut down on 26 January 2015 at 1404 in preparation of a snow storm. The system was restarted on 3 February 2015.

The Northern MTUs E and F will continue to operate at a flow rate of 250 gpm (when restarted). As of 23 January 2015, over 962 million gallons of water have been treated and re-injected. The following J-2 Range Northern MTUs shut downs occurred in January:

- MTU E was shut down on 17 January 2015 at 0710 due to a system alarm and was restarted on 20 January 2015 at 0727;
- MTU F was shut down on 17 January 2015 at 0710 due to a system alarm and was restarted on 20 January 2015 at 0724; and
- MTUs E and F were shut down on 26 January 2015 at 1353 in preparation of a snow storm, and were restarted on 3 February 2015 at 1528 and 1523, respectively.

Eastern Plant

The J-2 Range Eastern Treatment facility consists of removal and treatment of groundwater to minimize downgradient migration of explosives compounds and perchlorate. The ETI system includes the following components: three extraction wells in an axial array, an ex-situ treatment process consisting of an ion exchange (IX) resin and granular activated carbon (GAC) media to treat perchlorate and explosives compounds and three infiltration trenches located along the lateral boundaries of the plume where treated water will enter the vadose zone and infiltrate into the aquifer. The J-2 Range Eastern system is running at a combined total flow rate of 495 gpm.

The MTUs H and I will continue to operate at a flow rate of 250 gpm (when restarted). As of 23 January 2015, over 649 million gallons of water have been treated and re-injected. The following shut downs of MTUs H and I occurred in January:

 MTUs H and I were shut down on 26 January 2015 at 1415 in preparation of a snow storm, and were restarted on 3 February 2015 at 1250. MTU J continues to operate at a flow rate of 120 gpm. As of 30 January 2015, over 306 million gallons of water have been treated and re-injected. The following shut downs of MTU J occurred in January:

- MTU J was shut down on 7 January 2015 at 1937 due to a system alarm and was restarted on 8 January 2015 at 1205; and
- MTU J was shut down on 26 January 2015 in preparation of a snow storm and was restarted on 2 February 2015 at 1419.

MTU K continues to operate at a flow rate of 125 gpm. As of 30 January 2015, over 369.5 million gallons of water have been treated and re-injected. The following shut downs of MTU K occurred in January:

- MTU K was shut down on 26 January 2015 at 1420 in preparation of a snow storm and was restarted on 29 January 2015 at 1056; and
- MTU K was shut down on 31 January 2015 at 1754 due to a system alarm and was restarted on 2 February 2015 at 1409.

Central Impact Area RA

The Central Impact Area (CIA) Groundwater treatment facility consists of removal and treatment of groundwater to minimize downgradient migration of explosives compounds and perchlorate. The ETR system includes the following components: two extraction wells, an ex-situ treatment process consisting of an ion exchange (IX) resin and granular activated carbon (GAC) media to treat explosives compounds and two infiltration galleries to return treated water to the aquifer. The CIA systems 1 and 2 continue to run at a combined total flow rate of 500 gpm. As of 30 January 2015, over 265 million gallons of water have been treated and re-injected. The following CIA treatment facility shutdowns occurred in January:

• Systems 1 and 2 were shut down on 26 January in preparation of a snow storm and were restarted on 30 January 2015.

SUMMARY OF ACTIONS TAKEN

Samples collected during the reporting period are summarized in Table 1.

Process water samples were collected at Frank Perkins Road, Pew Road, Base Boundary, J-1 Range Southern, J-1 Range Northern, J-2 Range Eastern, J-3 Range, and Central Impact Area (CIA).

Environmental and system performance monitoring groundwater samples were collected from J-2 Range Northern, J-2 Range Eastern, J-3 Range, and L Range.

Completed soil sampling at the J-2 Range.

Staked-out soil sampling grids at the Small Arms Ranges.

Began soil sampling at the Training Areas.

Completed Munitions and Explosives of Concern (MEC) investigation at the meandering paths and designated grids for the field season; investigations will resume next field season.

JBCC IAGWSP Tech Update Meeting Minutes 15 January 2015

CIA Source Work Update

USACE said that there were no new updates for CIA fieldwork. IAGWSP noted that they had forwarded the results from the consolidated shot sampling to the agencies.

Demo 1

USACE reported that the biologist and archeologist had performed their site visit on the Mendes property. USACE stated the environmental paperwork to Coastal Zone Management and the State Historic Preservation Office is being submitted this week. It was noted that the site is considered an area of moderate to high archeological sensitivity as well as a priority habitat for the box turtle. USACE explained that they are on schedule for a record of environmental consideration by the end of February. IAGWSP will continue to provide updates at tech meetings. The design project note was submitted to the agencies yesterday and comments have already been received. IAGWSP will work on responses to comments.

General Fieldwork

USACE reported that the contractor is preparing to start delineation sampling at the Small Arms Ranges. If ground conditions are favorable (i.e. the ground is not frozen) they will stake the locations next week and conduct sampling shortly thereafter. Excavation and associated field work is anticipated to begin in mid-March.

Sampling in the Training Areas has been suspended due to frozen ground conditions. Sampling at the IBC has been completed and about half of the samples were collected at the U Range. The sampling team will try and resume fieldwork next week.

USACE Baltimore will mobilize toward the end of February to perform geophysical investigations in the Training Areas.

At the J-2 Range, all MIS samples (62 grids) were completed the first week in January. Meandering path MEC investigations and 5 of 13 full grids have been completed. Crews are currently working in grid M19. The MEC tracking log was forwarded to the agencies on Monday; approximately 150 MEC items (mostly 30MM HEIs) have been found to date.

Action Items

The action items were discussed and updated.

J-2 Range Monitoring Presentations

Monitoring presentations were provided on the J-2 Range Northern and Eastern plumes annual monitoring reports. For the eastern plume, it was noted that during the reporting period (June 2013 to September 2014), one new well (MW-627) was installed to confirm contamination to the east of the main plume and there was a change in the pumping rates for the treatment system. The J-2 Range Eastern plume ETI systems have operated as designed and have treated a combined 303 million gallons to date. Influent perchlorate concentrations ranged from 0.29 ppb to 2.01 ppb; RDX ranged from ND to 0.89 ppb. Monitoring results, trends and hydraulic analysis conducted during the reporting period were reviewed

and discussed. The maximum detection was 71.3 ppb for perchlorate and 13.9 ppb for RDX. At this time, no changes are recommended for plant operations, extraction well rates or the hydraulic well field. For the chemical monitoring program, IAGWSP is recommending to remove several wells that have been non-detect for some time, reduce the monitoring frequency for two wells and add one well to the program. It was noted that model predicted cleanup timelines are consistent with those presented in the Decision Document.

For the Northern plume, it was noted that during the reporting period (June 2013 to September 2014), priority one (installation of four new wells) and priority two data gap drilling (installation of eight new wells) was completed. In addition, the extraction well rates were optimized. The J-2 Range Northern plume ETI systems have operated as designed and have treated a combined 298 million gallons to date. Influent perchlorate concentrations ranged from 0.89 ppb to 10.8 ppb; RDX was not detected. Monitoring results, trends and hydraulic analysis conducted during the reporting period were reviewed and discussed. The maximum detection was 70.1 ppb for perchlorate and 2.8 ppb for RDX. At this time, no changes are recommended for plant operations or extraction well rates. IAGWSP recommends adding eight wells to the hydraulic monitoring program. For the chemical monitoring program, IAGWSP is recommending removing six wells, reducing the frequency for seven wells and adding 20 wells to the perchlorate monitoring well network; For RDX monitoring, removing six wells and reducing the frequency of six wells is recommended. For wells used for both perchlorate and RDX monitoring, IAGWSP is recommending removing two wells, reducing the frequency of one well and adding thirteen wells. It was noted that model predicted cleanup timelines are consistent with those presented in the Decision Document.

EPA and MassDEP will provide comments on the report.

JBCC IAGWSP Tech Update Meeting Minutes 29 January 2015

CIA Source Work Update

USACE said that there were no new updates for CIA fieldwork – the snowstorm has shut everything down. The team reviewed a map and spreadsheet describing the work conducted to date. EPA requested that the spreadsheet include the number of grids per area.

Demo 1

USACE reported that the environmental paperwork for Coastal Zone Management and the State Historic Preservation Office is under review. USACE explained that they are on schedule for a record of environmental consideration by the end of February. IAGWSP will continue to provide updates at tech meetings. The design project note was submitted to the agencies and comments have already been received. IAGWSP and the USACE have prepared responses to comments and will work with the agencies to finalize the well-field design project note.

General Fieldwork

The IAGWSP treatment plants were shut down on Monday, January 26, 2015 in anticipation of the upcoming blizzard to prevent damage to the system due to uncontrolled power outages. Now that the storm is over, access roads will be plowed and the treatment plants will be brought back on line.

USACE reported that the contractor has been working to stake out the locations for the Small Arms Ranges delineation sampling. About 50% of the locations were staked before the storm. Work will resume once the snow melts.

Sampling in the Training Areas has been suspended due to frozen ground conditions. Sampling at the IBC has been completed and one grid each remains at U Range and KD Range. The sampling team will resume fieldwork when they can. Geophysical work will be conducted in March, after J-2 Range is finished.

At the J-2 Range, all MIS samples (62 grids) were completed the first week in January. MEC investigations continue with 7 full grids and 3 polygons remaining to be investigated. Crews have been de-mobilized. Work will resume in March. MEC finds will be reviewed at the completion of the geophysical work and decisions will be made on additional geophysical work and/or soil sampling.

JBCC Cleanup Team Meeting

The JBCC Cleanup Team (JBCCCT), formerly the MMR Cleanup Team (MMRCT), is next scheduled to meet on April 8, 2015. The Cleanup Team meeting discusses late breaking news and responses to action items, as well as updates from the IAGWSP and the Installation Restoration Program (IRP). The JBCCCT meetings provide a forum for community input regarding issues related to both the IRP and the IAGWSP.

SUMMARY OF DATA RECEIVED

Table 2 summarizes the validated detections of explosives compounds and perchlorate for all groundwater results received from 1 January through 31 January 2015. These results are compared to the Maximum Contaminant Levels/Health Advisory (MCL/HA) values for respective analytes. Explosives and perchlorate are the primary contaminants of concern (COC) at Camp Edwards.

There are currently twelve operable units (OU) under investigation and cleanup at Camp Edwards. The OUs include: Central Impact Area, Demolition Area 1, Demolition Area 2, Former A Range, J-1 Range, J-2 Range, J-3 Range, L Range, Northwest Corner, Small Arms Ranges, Training Areas and Western Boundary. Environmental monitoring reports for each OU are generated each year to evaluate the current year groundwater results. These reports are available on the site Environmental Data Management System (EDMS) and at the project document repositories (IAGWSP office, Jonathan Bourne Library, Falmouth Public Library, and Sandwich Public Library).

2. DELIVERABLES SUBMITTED

Deliverables submitted during the reporting period include the following:

Monthly Progress Report No. 213 for December 2014
 Final Northwest corner 2014 Annual Environmental Monitoring Report
 1/10/2015
 1/05/2015

3. SCHEDULED ACTIONS

The following documents are being prepared or revised during February 2015:

- CIA Project Note for ESTCP Metal Mapper Results;
- CIA Design Package Project Note;
- CIA 2014 Interim Environmental Monitoring Report;
- CIA BEM Project Note;
- J-2 Range Project Note for Additional Wells to Evaluate Source Response;
- J-3 Range Decision Document;
- J-3 Range Draft Post-Decision Document Field Work Project Notes;
- Small Arms Ranges Decision Document;
- Training Areas Draft Investigation Report;
- Demolition Area 1 Well Field Design Project Note;
- Demolition Area 2 2014 Annual Environmental Monitoring Report;
- Demolition Area 2 Plume Shell Reassessment Tech Memo;
- Demolition Area 2 Decision Document Addendum;
- 2013 BIP Report;
- J-1 Range Northern and J-1 Range Southern Environmental Monitoring Work Plan;
- J-3 Range 2014 Environmental Monitoring Report; and
- J-2 Range Eastern and J-2 Range Northern 2014 Environmental Monitoring Report.

TABLE 1 Sampling Progress: 1 January to 31 January 2015

	.,	Sampling Pro	gress. 1 d	anuary to 31	January 2013			
Area Of Concern Location		Field Sample ID	Sample Type	Date Sampled	Matrix	Top of Screen (ft bgs)	Bottom of Screen (ft bgs)	
J2 Range Northern			N	01/26/2015	Ground Water	216.2	226.2	
J2 Range Northern	J2EW0001	J2EW0001_S15	N	01/26/2015	Ground Water	179	234	
J2 Range Northern	J2EW0003	J2EW0003_S15	N	01/26/2015	Ground Water	202	232	
J2 Range Northern	MW-327M3	MW-327M3_S15	N	01/26/2015	Ground Water	220.2	230.2	
J2 Range Northern	MW-337M1	MW-337M1_S15	N	01/26/2015	Ground Water	243.7	253.7	
L Range	MW-153M2	MW-153M2_S15	N	01/21/2015	Ground Water	144	154	
L Range	MW-153M1	MW-153M1_S15	N	01/21/2015	Ground Water	199	209	
L Range L Range	90WT0013 90MW0031	90WT0013_S15 90MW0031_S15	N N	01/21/2015 01/21/2015	Ground Water Ground Water	92 195.3	102 200.2	
J2 Range Eastern	MW-627M1	MW-627M1_R3	N	01/21/2015	Ground Water	269.5	279.5	
J2 Range Northern	MW-622M2	MW-622M2_R3	N	01/20/2015	Ground Water	220.4	230.4	
J2 Range Northern	MW-622M1	MW-622M1_R3	N	01/20/2015	Ground Water	245.4	255.4	
L Range	MW-242M3	MW-242M3_S15	N	01/15/2015	Ground Water	124	134	
L Range	MW-242M2	MW-242M2_S15	N	01/15/2015	Ground Water	165	175	
L Range	MW-242M1	MW-242M1_S15	N	01/15/2015	Ground Water	235	245	
L Range	MW-242M1	MW-242M1_S15D	FD	01/15/2015	Ground Water	235	245	
L Range	MW-288M1	MW-288M1_S15	N	01/15/2015	Ground Water	190	200	
J2 Range Northern	MW-631M2	MW-631M2_R3	N	01/14/2015	Ground Water	200.1	210.1	
J2 Range Northern	MW-631M1	MW-631M1_R3	N	01/14/2015	Ground Water	233.1	243.1	
J2 Range Northern	MW-630M1	MW-630M1_R3	N	01/14/2015	Ground Water	217	227	
J2 Range Northern	MW-634M3	MW-634M3_R3	N	01/13/2015	Ground Water	170.6	180.6	
J2 Range Northern	MW-634M3	MW-634M3_R3D	FD	01/13/2015	Ground Water	170.6	180.6	
J2 Range Northern	MW-634M2	MW-634M2_R3	N	01/13/2015	Ground Water	200.6	210.6	
J2 Range Northern	MW-634M2	MW-634M2_R3D	FD	01/13/2015	Ground Water	200.6	210.6	
J2 Range Northern	MW-634M1	MW-634M1_R3	N	01/13/2015	Ground Water	305.6	315.6	
J3 Range	MW-636M2	MW-636M2_R3	N	01/13/2015	Ground Water	110.5	120.5	
J3 Range	MW-636M1	MW-636M1_R3	N	01/13/2015	Ground Water	141.6	151.6	
J3 Range	MW-576M3	MW-576M3_R3	N	01/12/2015	Ground Water	89.9	108.9	
J3 Range	MW-576M2	MW-576M2_R3	N	01/12/2015	Ground Water	133.9	143.9	
J3 Range	MW-576M2	MW-576M2_R3D	FD	01/12/2015	Ground Water	133.9	143.9	
J3 Range	MW-576M1	MW-576M1_R3	N	01/12/2015	Ground Water	173.9	183.9	
J3 Range	MW-637M3	MW-637M3_R3	N	01/12/2015	Ground Water	174.1	184.1	
J3 Range	MW-637M2	MW-637M2_R3	N N	01/12/2015	Ground Water Ground Water	214.1 236.1	224.1 246.1	
J3 Range J1 Range Southern	MW-637M1 J1S-EFF	MW-637M1_R3 J1S-EFF-86A	N	01/12/2015 01/08/2015	Process Water	0	0	
J1 Range Southern	J1S-EFF J1S-MID-2	J1S-MID-2-86A	N	01/08/2015	Process Water	0	0	
J1 Range Southern	J1S-INF-2	J1S-INF-2-86A	N	01/08/2015	Process Water	0	0	
L Range	90MW0007	90MW0007_S15	N	01/08/2015	Ground Water	179	184	
L Range	90MW0034	90MW0034 S15	N	01/08/2015	Ground Water	94	99	
Demolition Area 1	D1-EFF	D1-EFF-54A	N	01/08/2015	Process Water	0	0	
Demolition Area 1	D1-MID-2	D1-MID-2-54A	N	01/08/2015	Process Water	0	0	
Demolition Area 1	D1-MID-1	D1-MID-1-54A	N	01/08/2015	Process Water	0	0	
Demolition Area 1	D1-INF	D1-INF-54A	N	01/08/2015	Process Water	0	0	
Demolition Area 1	PR-EFF	PR-EFF-106A	N	01/08/2015	Process Water	0	0	
Demolition Area 1	PR-MID-2	PR-MID-2-106A	N	01/08/2015	Process Water	0	0	
Demolition Area 1	PR-MID-1	PR-MID-1-106A	N	01/08/2015	Process Water	0	0	
Demolition Area 1	PR-INF	PR-INF-106A	N	01/08/2015	Process Water	0	0	
Demolition Area 1	FPR-2-EFF-B	FPR-2-EFF-B-106A	N	01/08/2015	Process Water	0	0	
Demolition Area 1	FPR-2-GAC-MID3B	FPR-2-GAC-MID3B-106A	N	01/08/2015	Process Water	0	0	
Demolition Area 1	FPR2-POST-IX-B	FPR2-POST-IX-B-106A	N	01/08/2015	Process Water	0	0	
Demolition Area 1	FPR-2-INF	FPR-2-INF-106A	N	01/08/2015	Process Water	0	0	
Central Impact Area	CIA2-EFF	CIA2-EFF-12A	N	01/07/2015	Process Water	0	0	
Central Impact Area	CIA2-MID2	CIA2-MID2-12A	N	01/07/2015	Process Water	0	U	
Central Impact Area	CIA2-MID1	CIA2-MID1-12A	N N	01/07/2015	Process Water Process Water	0	0	
Central Impact Area	CIA2-INF	CIA2-INF-12A	N N	01/07/2015		0	0	
Central Impact Area Central Impact Area	CIA1-EFF CIA1-MID2	CIA1-EFF-12A CIA1-MID2-12A	N N	01/07/2015 01/07/2015	Process Water Process Water	0	0	
L Range	MW-595M2	MW-595M2_S15	N	01/07/2015	Ground Water	205.3	215.3	
Central Impact Area	CIA1-MID1	CIA1-MID1-12A	N	01/07/2015	Process Water	0	0	
Central Impact Area	CIA1-INF	CIA1-INF-12A	N	01/07/2015	Process Water	0	0	
L Range	MW-595M1	MW-595M1_S15	N	01/07/2015	Ground Water	255.3	265.3	
L Range	MW-596M1	MW-596M1_S15	N	01/07/2015	Ground Water	231.1	241.1	
J3 Range	J3-EFF	J3-EFF-100A	N	01/07/2015	Process Water	0	0	
J3 Range	J3-MID-2	J3-MID-2-100A	N	01/07/2015	Process Water	0	0	
JJ Kange					Process Water	0	0	
J3 Range	J3-MID-1	J3-MID-1-100A	N	01/07/2015	FIOLESS WALE	U		
	J3-MID-1 J3-INF	J3-MID-1-100A J3-INF-100A	N	01/07/2015	Process Water	0	0	
J3 Range					+			

TABLE 1 Sampling Progress: 1 January to 31 January 2015

Area Of Concern	Location	Field Sample ID	Sample Type	Date Sampled	Matrix	Top of Screen (ft bgs)	Bottom of Screen (ft bgs)
J2 Range Eastern	J2E-EFF-IH	J2E-EFF-IH-76A	N	01/06/2015	Process Water	0	0
J2 Range Eastern	J2E-MID-2H	J2E-MID-2H-76A	N	01/06/2015	Process Water	0	0
J2 Range Eastern	J2E-MID-1H	J2E-MID-1H-76A	N	01/06/2015	Process Water	0	0
J2 Range Eastern	J2E-MID-2I	J2E-MID-2I-76A	N	01/06/2015	Process Water	0	0
J2 Range Eastern	J2E-MID-1I	J2E-MID-1I-76A	N	01/06/2015	Process Water	0	0
J2 Range Northern	SSJ2J11	J2J11C	FR	01/06/2015	Soil	0	0.25
J2 Range Eastern	J2E-INF-I	J2E-INF-I-76A	N	01/06/2015	Process Water	0	0.20
L Range	MW-529M1	MW-529M1_S15	N	01/06/2015	Ground Water	107	117
J2 Range Eastern	J2E-EFF-K	J2E-EFF-K-76A	N	01/06/2015	Process Water	0	0
J2 Range Eastern	J2E-MID-2K	J2E-MID-2K-76A	N	01/06/2015	Process Water	0	0
J2 Range Eastern	J2E-MID-1K	J2E-MID-1K-76A	N	01/06/2015	Process Water	0	0
J2 Range Northern	SSJ2J11	J2J11B	FR	01/06/2015	Soil	0	0.25
J2 Range Eastern	J2E-INF-K	J2E-INF-K-76A	N	01/06/2015	Process Water	0	0.23
J2 Range Eastern	J2E-EFF-J	J2E-EFF-J-76A	N	01/06/2015	Process Water	0	0
J2 Range Eastern	J2E-MID-2J	J2E-MID-2J-76A	N	01/06/2015	Process Water	0	0
J2 Range Eastern J2 Range Northern	SSJ2J11	J2J11A	N N	01/06/2015	Soil	0	0.25
	MW-241M1	MW-241M1_S15	N	01/06/2015	Ground Water	97	107
L Range			N N			0	0
J2 Range Eastern	J2E-MID-1J	J2E-MID-1J-76A	N N	01/06/2015	Process Water	Ů	
J2 Range Eastern	J2E-INF-J	J2E-INF-J-76A	N N	01/06/2015	Process Water	0	0
J2 Range Northern	SSJ2K11	J2K11A		01/06/2015	Soil	0	0.25
J2 Range Northern	SSJ2JK13	J2JK13A	N	01/05/2015	Soil	0	0.25
J2 Range Northern	SSJ2l14	J2I14A	N	01/05/2015	Soil	0	0.25
J3 Range	90EW0001	90EW0001_S15	N	01/05/2015	Ground Water	83.1	143.8
J2 Range Northern	SSJ2K14	J2K14A	N	01/05/2015	Soil	0	0.25
J3 Range	J3EW0032	J3EW0032_S15	N	01/05/2015	Ground Water	102	152
J2 Range Northern	SSJ2J14	J2J14A	N	01/05/2015	Soil	0	0.25
J3 Range	J3EWIP1	J3EWIP1_S15	N	01/05/2015	Ground Water	153	193
J2 Range Northern	J2N-EFF-G	J2N-EFF-G-100A	N	01/05/2015	Process Water	0	0
J2 Range Northern	J2N-MID-2G	J2N-MID-2G-100A	N	01/05/2015	Process Water	0	0
J2 Range Northern	J2N-MID-1G	J2N-MID-1G-100A	N	01/05/2015	Process Water	0	0
J2 Range Northern	J2N-INF-G	J2N-INF-G-100A	N	01/05/2015	Process Water	0	0
J2 Range Northern	MW-632M2	MW-632M2_R3	N	01/05/2015	Ground Water	229.5	239.5
J2 Range Northern	J2N-EFF-EF	J2N-EFF-EF-100A	N	01/05/2015	Process Water	0	0
J2 Range Northern	J2N-MID-2F	J2N-MID-2F-100A	N	01/05/2015	Process Water	0	0
J2 Range Northern	J2N-MID-1F	J2N-MID-1F-100A	N	01/05/2015	Process Water	0	0
J2 Range Northern	J2N-INF-EF	J2N-INF-EF-100A	N	01/05/2015	Process Water	0	0
J2 Range Northern	SSJ2H17	J2H17C	FR	01/05/2015	Soil	0	0.25
J2 Range Northern	J2N-MID-2E	J2N-MID-2E-100A	N	01/05/2015	Process Water	0	0
J2 Range Northern	J2N-MID-1E	J2N-MID-1E-100A	N	01/05/2015	Process Water	0	0
J2 Range Northern	MW-632M1	MW-632M1_R3	N	01/05/2015	Ground Water	254.5	264.5
J2 Range Northern	SSJ2H17	J2H17B	FR	01/05/2015	Soil	0	0.25
J1 Range Northern	J1N-EFF	J1N-EFF-15A	N	01/05/2015	Process Water	0	0
J1 Range Northern	J1N-MID2	J1N-MID2-15A	N	01/05/2015	Process Water	0	0
J1 Range Northern	J1N-MID1	J1N-MID1-15A	N	01/05/2015	Process Water	0	0
J1 Range Northern	J1N-INF2	J1N-INF2-15A	N	01/05/2015	Process Water	0	0
J2 Range Northern	SSJ2H17	J2H17A	N	01/05/2015	Soil	0	0.25
J2 Range Northern	MW-635M1	MW-635M1_R3	N	01/05/2015	Ground Water	265.4	275.4
J2 Range Northern	SSJ2K17	J2K17A	N	01/05/2015	Soil	0	0.25

TABLE 2 VALIDATED EXPLOSIVE AND PERCHLORATE RESULTS Data Received January 2015

					,	Data Receive								
Area of Concern	Location ID	Field Sample ID	Top Depth (ft bgs)	Bottom Depth (ft bgs)	Date Sampled	Test Method	Analyte	Result Value	Qualifier	Units	MCL/HA	> MCL/HA	MDL	RL
L Range	MW-595M1	MW-595M1_S15	255.3	265.3	01/07/2015	SW6850	Perchlorate	0.11	J	UG/L	2.0		0.019	0.20
L Range	MW-595M1	MW-595M1_S15	255.3	265.3	01/07/2015	SW8330	Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (RDX)	1.3		UG/L	0.60	Χ	0.026	0.20
L Range	MW-530S	MW-530S_S15	97	107	01/06/2015	SW6850	Perchlorate	0.039	J	UG/L	2.0		0.019	0.20
L Range	MW-529M1	MW-529M1_S15	107	117	01/06/2015	SW6850	Perchlorate	0.039	J	UG/L	2.0		0.019	0.20
Demolition Area 1	MW-76M2	MW-76M2_F14	105	115	12/29/2014	SW8330	4-Amino-2,6-Dinitrotoluene	0.25		UG/L	7.3		0.017	0.20
Demolition Area 1	MW-76M2	MW-76M2_F14	105	115	12/29/2014	SW8330	Octahydro-1,3,5,7-Tetranitro-1,3,5,7-Tetrazocine (HMX)	0.40		UG/L	400		0.023	0.20
Demolition Area 1	MW-76M2	MW-76M2_F14	105	115	12/29/2014	SW8330	Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (RDX)	0.53		UG/L	0.60		0.026	0.20
Demolition Area 1	MW-77M2	MW-77M2_F14	120	130	12/29/2014	SW8330	Octahydro-1,3,5,7-Tetranitro-1,3,5,7-Tetrazocine (HMX)	0.94		UG/L	400		0.023	0.20
Demolition Area 1	MW-77M2	MW-77M2_F14	120	130	12/29/2014	SW8330	Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (RDX)	0.98		UG/L	0.60	Χ	0.026	0.20
Demolition Area 1	MW-31S	MW-31S_F14	98	103	12/29/2014	SW8330	4-Amino-2,6-Dinitrotoluene	0.29		UG/L	7.3		0.017	0.20
Demolition Area 1	MW-31S	MW-31S_F14	98	103	12/29/2014	SW8330	2-Amino-4,6-dinitrotoluene	0.56		UG/L	7.3		0.016	0.20
Demolition Area 1	MW-31S	MW-31S_F14	98	103	12/29/2014	SW8330	Octahydro-1,3,5,7-Tetranitro-1,3,5,7-Tetrazocine (HMX)	0.80		UG/L	400		0.023	0.20
Demolition Area 1	MW-31S	MW-31S_F14	98	103	12/29/2014	SW8330	2,4,6-Trinitrotoluene	0.93		UG/L	2.0		0.029	0.20
Demolition Area 1	MW-31S	MW-31S_F14	98	103	12/29/2014	SW8330	Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (RDX)	1.7		UG/L	0.60	Х	0.026	0.20
Demolition Area 1	MW-31S	MW-31S_F14D	98	103	12/29/2014	SW8330	4-Amino-2,6-Dinitrotoluene	0.31		UG/L	7.3		0.017	0.20
Demolition Area 1	MW-31S	MW-31S_F14D	98	103	12/29/2014	SW8330	2-Amino-4,6-dinitrotoluene	0.58		UG/L	7.3		0.016	0.20
Demolition Area 1	MW-31S	MW-31S_F14D	98	103	12/29/2014	SW8330	Octahydro-1,3,5,7-Tetranitro-1,3,5,7-Tetrazocine (HMX)	0.85		UG/L	400		0.023	0.20
Demolition Area 1	MW-31S	MW-31S F14D	98	103	12/29/2014	SW8330	2,4,6-Trinitrotoluene	1.0		UG/L	2.0		0.029	0.20
Demolition Area 1	MW-31S	MW-31S F14D	98	103	12/29/2014	SW8330	Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (RDX)	1.8		UG/L	0.60	Х	0.026	0.20
Demolition Area 1	MW-31M	MW-31M_F14	113	123	12/29/2014	SW8330	2-Amino-4,6-dinitrotoluene	0.31	J	UG/L	7.3		0.016	0.20
Demolition Area 1	MW-31M	MW-31M_F14	113	123	12/29/2014	SW8330	Octahydro-1,3,5,7-Tetranitro-1,3,5,7-Tetrazocine (HMX)	0.58	J	UG/L	400		0.023	0.20
Demolition Area 1	MW-31M	MW-31M F14	113	123	12/29/2014	SW8330	Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (RDX)	1.0	J	UG/L	0.60	Х	0.026	0.20
J2 Range Northern	MW-621M2	MW-621M2_R3	219.4	229.4	12/22/2014	SW6850	Perchlorate	3.8		UG/L	2.0	Х	0.019	0.20
J2 Range Northern	MW-621M2	MW-621M2_R3D	219.4	229.4	12/22/2014	SW6850	Perchlorate	3.9		UG/L	2.0	Х	0.019	0.20
J2 Range Northern	MW-621M1	MW-621M1_R3	249.4	259.4	12/22/2014	SW6850	Perchlorate	0.027	J	UG/L	2.0		0.019	0.20
J2 Range Northern	MW-640M2	MW-640M2_R2	216	226	12/22/2014	SW6850	Perchlorate	0.73		UG/L	2.0		0.019	0.20
J2 Range Northern	MW-640M1	MW-640M1_R2	246	256	12/22/2014	SW6850	Perchlorate	0.63		UG/L	2.0		0.019	0.20
Demolition Area 1	MW-545M4	MW-545M4 F14	72	82	12/17/2014	SW6850	Perchlorate	0.43		UG/L	2.0		0.019	0.20
Demolition Area 1	MW-545M3	MW-545M3_F14	101.5	111.5	12/17/2014	SW6850	Perchlorate	0.23		UG/L	2.0		0.019	0.20
Demolition Area 1	MW-545M2	MW-545M2 F14	142	152	12/17/2014	SW6850	Perchlorate	2.2		UG/L	2.0	X	0.019	0.20
Demolition Area 1	MW-545M1	MW-545M1 F14	162	172	12/17/2014	SW6850	Perchlorate	1.5		UG/L	2.0		0.019	0.20
Demolition Area 1	MW-19S	MW-19S_F14	52.7	62.7	12/16/2014	SW8330	2-Amino-4,6-dinitrotoluene	0.26		UG/L	7.3		0.016	0.20
Demolition Area 1	MW-19S	MW-19S_F14	52.7	62.7	12/16/2014	SW8330	4-Amino-2,6-Dinitrotoluene	0.37		UG/L	7.3		0.017	0.20
Demolition Area 1	MW-19S	MW-19S F14	52.7	62.7	12/16/2014	SW8330	Octahydro-1,3,5,7-Tetranitro-1,3,5,7-Tetrazocine (HMX)	2.2		UG/L	400		0.023	0.20
Demolition Area 1	MW-19S	MW-19S_F14	52.7	62.7	12/16/2014	SW8330	Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (RDX)	5.8		UG/L	0.60	X	0.026	0.20
Demolition Area 1	MW-19S	MW-19S F14D	52.7	62.7	12/16/2014	SW8330	2-Amino-4,6-dinitrotoluene	0.25		UG/L	7.3		0.016	0.20
Demolition Area 1	MW-19S	MW-19S_F14D	52.7	62.7	12/16/2014	SW8330	4-Amino-2.6-Dinitrotoluene	0.37		UG/L	7.3		0.017	0.20
Demolition Area 1	MW-19S	MW-19S_F14D	52.7	62.7	12/16/2014	SW8330	Octahydro-1,3,5,7-Tetranitro-1,3,5,7-Tetrazocine (HMX)	2.3		UG/L	400		0.023	0.20
Demolition Area 1	MW-19S	MW-19S_F14D	52.7	62.7	12/16/2014	SW8330	Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (RDX)	6.3		UG/L	0.60	Y	0.026	0.20
Demolition Area 1	MW-431	MW-431 F14	88	188	12/16/2014	SW6850	Perchlorate	0.15	1	UG/L	2.0	Λ	0.020	0.20
Demolition Area 1	MW-431	MW-431_F14	88	188	12/16/2014	SW8330	Octahydro-1,3,5,7-Tetranitro-1,3,5,7-Tetrazocine (HMX)	0.13	 	UG/L	400		0.013	0.20
Demolition Area 1	MW-431	MW-431_F14	88	188	12/16/2014	SW8330	Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (RDX)	0.39	1	UG/L	0.60		0.023	0.20
Demolition Area 1	MW-431	MW-431_F14	88	188	12/16/2014	SW8330	Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (RDX)	0.39		UG/L	0.60		0.026	0.20
Demolition Area 1	MW-432	MW-432_F14	88	188	12/16/2014	SW6850	Perchlorate	0.31	1	UG/L	2.0		0.026	0.20
	MW-341M3	MW-341M3_F14	209.5	219.5	12/16/2014	SW6850		0.47	1	UG/L	2.0		0.019	0.20
Demolition Area 1	XX9514	XX9514 F14	102	112		SW6850	Perchlorate Perchlorate	1.9	J	UG/L	2.0		0.019	0.20
Demolition Area 1		_	_		12/15/2014	ł	Perchlorate		+	_	-			
Demolition Area 1	MW-544M3	MW-544M3_F14	77.5	87.5	12/15/2014	SW6850	Perchlorate	0.072	J	UG/L	2.0		0.019	0.20

TABLE 2 VALIDATED EXPLOSIVE AND PERCHLORATE RESULTS Data Received January 2015

			,		,	Juliu Mederite	•	,						
Area of Concern	Location ID	Field Sample ID	Top Depth (ft bgs)	Bottom Depth (ft bgs)	Date Sampled	Test Method	Analyte	Result Value	Qualifier	Units	MCL/HA	> MCL/HA	MDL	RL
Demolition Area 1	MW-544M2	MW-544M2_F14	112	122	12/15/2014	SW6850	Perchlorate	0.35		UG/L	2.0		0.019	0.20
Demolition Area 1	MW-544M1	MW-544M1_F14	162	172	12/15/2014	SW6850	Perchlorate	0.89		UG/L	2.0		0.019	0.20
Western Boundary	4036000-04G	4036000-04G_14Q4	55	65	12/11/2014	SW6850	Perchlorate	0.20		UG/L	2.0		0.019	0.20
Western Boundary	4036000-03G	4036000-03G_14Q4	50	60	12/11/2014	SW6850	Perchlorate	0.16	J	UG/L	2.0		0.019	0.20
Western Boundary	4036000-06G	4036000-06G_14Q4	108	128	12/11/2014	SW6850	Perchlorate	0.11	J	UG/L	2.0		0.019	0.20
Western Boundary	4036000-01G	4036000-01G_14Q4	38	70	12/11/2014	SW6850	Perchlorate	0.14	J	UG/L	2.0		0.019	0.20
Demolition Area 1	MW-610M2	MW-610M2_F14	85	95	12/10/2014	SW6850	Perchlorate	1.5		UG/L	2.0		0.019	0.20
Demolition Area 1	MW-610M1	MW-610M1_F14	110	120	12/10/2014	SW6850	Perchlorate	1.5		UG/L	2.0		0.019	0.20
Demolition Area 1	MW-598M2	MW-598M2_F14	88	98	12/10/2014	SW6850	Perchlorate	2.1		UG/L	2.0	Χ	0.019	0.20
Demolition Area 1	MW-598M1	MW-598M1_F14	122	132	12/10/2014	SW6850	Perchlorate	0.45		UG/L	2.0		0.019	0.20
Demolition Area 1	MW-556M2	MW-556M2_F14	111	121	12/09/2014	SW6850	Perchlorate	1.9		UG/L	2.0		0.019	0.20
Demolition Area 1	MW-556M1	MW-556M1_F14	153	163	12/09/2014	SW8330	Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (RDX)	0.20		UG/L	0.60		0.026	0.20
Demolition Area 1	MW-556M1	MW-556M1_F14	153	163	12/09/2014	SW6850	Perchlorate	2.8		UG/L	2.0	Х	0.019	0.20
Demolition Area 1	MW-554M2	MW-554M2_F14	89.1	99.1	12/09/2014	SW6850	Perchlorate	0.15	J	UG/L	2.0		0.019	0.20
Demolition Area 1	MW-554M1	MW-554M1_F14	120	130	12/09/2014	SW6850	Perchlorate	0.40		UG/L	2.0		0.019	0.20
Demolition Area 1	MW-558M2	MW-558M2_F14	98	108	12/09/2014	SW6850	Perchlorate	0.48		UG/L	2.0		0.019	0.20
Demolition Area 1	MW-558M1	MW-558M1_F14	134	144	12/08/2014	SW6850	Perchlorate	2.2		UG/L	2.0	Χ	0.019	0.20
Demolition Area 1	MW-559M2	MW-559M2_F14	87	97	12/08/2014	SW6850	Perchlorate	0.36		UG/L	2.0		0.019	0.20
Demolition Area 1	MW-559M1	MW-559M1_F14	135.6	145.6	12/08/2014	SW6850	Perchlorate	2.4		UG/L	2.0	Χ	0.019	0.20
Demolition Area 1	MW-641M2	MW-641M2_F14	86.2	96.2	12/08/2014	SW6850	Perchlorate	0.37		UG/L	2.0		0.019	0.20
Demolition Area 1	MW-641M1	MW-641M1_F14	113.2	123.2	12/08/2014	SW6850	Perchlorate	0.76		UG/L	2.0		0.019	0.20
Demolition Area 1	MW-211M1	MW-211M1_F14	200	210	12/03/2014	SW8330	Octahydro-1,3,5,7-Tetranitro-1,3,5,7-Tetrazocine (HMX)	0.53		UG/L	400		0.023	0.20
Demolition Area 1	MW-211M1	MW-211M1_F14	200	210	12/03/2014	SW8330	Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (RDX)	0.93		UG/L	0.60	X	0.026	0.20
Demolition Area 1	MW-211M1	MW-211M1_F14	200	210	12/03/2014	SW6850	Perchlorate	2.4		UG/L	2.0	X	0.019	0.20
Demolition Area 1	MW-211M1	MW-211M1_F14D	200	210	12/03/2014	SW8330	Octahydro-1,3,5,7-Tetranitro-1,3,5,7-Tetrazocine (HMX)	0.51		UG/L	400		0.023	0.20
Demolition Area 1	MW-211M1	MW-211M1_F14D	200	210	12/03/2014	SW8330	Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (RDX)	0.87		UG/L	0.60	X	0.026	0.20
Demolition Area 1	MW-211M1	MW-211M1_F14D	200	210	12/03/2014	SW6850	Perchlorate	2.3		UG/L	2.0	X	0.019	0.20
Demolition Area 1	MW-258M1	MW-258M1_F14	109	119	12/03/2014	SW6850	Perchlorate	10.3		UG/L	2.0	X	0.038	0.40
Demolition Area 1	MW-258M1	MW-258M1_F14D	109	119	12/03/2014	SW6850	Perchlorate	10.4		UG/L	2.0	X	0.038	0.40
Demolition Area 1	MW-532M2	MW-532M2_F14	138	148	12/03/2014	SW8330	Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (RDX)	1.2		UG/L	0.60	X	0.026	0.20
Demolition Area 1	MW-532M2	MW-532M2_F14	138	148	12/03/2014	SW6850	Perchlorate	11.7		UG/L	2.0	X	0.038	0.40
Demolition Area 1	MW-532M2	MW-532M2_F14D	138	148	12/03/2014	SW6850	Perchlorate	12.1		UG/L	2.0	X	0.038	0.40
Demolition Area 1	MW-532M1	MW-532M1_F14	168	178	12/03/2014	SW6850	Perchlorate	0.91		UG/L	2.0		0.019	0.20