INTERIM MONTH REPORT FOR JANUARY 1 – JANUARY 13, 2006

EPA REGION I ADMINISTRATIVE ORDERS SDWA 1-97-1019 and 1-2000-0014

MASSACHUSETTS MILITARY RESERVATION TRAINING RANGE AND IMPACT AREA

The following summary of progress is for the period from January 1 through January 13, 2006.

1. SUMMARY OF REMEDIATION ACTIONS

The following is a description of remediation actions taken as part of or in preparation for Rapid Response Action (RRA) Plans for various Areas of Concern at Camp Edwards through January 13, 2006. A Rapid Response Action is an interim action that may be conducted prior to risk assessments or remedial investigations to address a known, ongoing threat of contamination to groundwater and/or soil.

Demo Area 1 Groundwater RRA

The Demo Area 1 Groundwater RRA consists of the removal and treatment of contaminated groundwater to control further migration of explosives and perchlorate. Extraction, treatment, and recharge systems (ETR) at Frank Perkins Road and Pew Road include single extraction wells, ex-situ treatment processes to remove explosives and perchlorate from the groundwater, and injection wells to return treated water to the aquifer.

The Pew Road ETR continues operation at a flow rate of 100 gallons per minute (gpm). As of January 13, 2006, approximately 68 million gallons of water have been treated and re-injected at the Pew Road ETR System.

The Frank Perkins Road ETR continues operation at a flow rate of 220 gpm. As of January 13, 2006, approximately 146 million gallons of water had been treated and re-injected at the Frank Perkins Road ETR System.

Well pad clearing and construction for wells EW-D1-501 and EW-D1-502 along Pocasset-Forestdale Road and well EW-D1-503 along Frank Perkins Road was completed.

Demo Area 1 Soil RRA

The Demo Area 1 Soil RRA consisted of the removal of all geophysical anomalies within the perimeter road (7.4 acres) and the removal and thermal treatment of contaminated soil from in and around the Demo 1 kettle hole. A total of 16,641 cubic yards of soil was excavated at Demo Area 1, with an additional 195 cubic yards excavated at Demo Area 1 burn pits.

Installation of erosion control outside of the 120-ft contour was completed.

J-2 Range Groundwater RRA

The J-2 Range Groundwater RRA consists of removal and treatment of contaminated groundwater to control further migration of explosives and perchlorate. ETR systems include single extraction wells, ex-situ treatment processes to remove explosives and perchlorate from the groundwater, and infiltration basins to return treated water to the aquifer.

Completed drilling of extraction wells J-2 EW0001 and J2 EW0003. Installation of well J2 EW0002 continued.

J-3 Range Groundwater RRA

The J-3 Range Groundwater RRA consists of removal and treatment of contaminated groundwater to control further migration of explosives and perchlorate. ETR systems include single extraction wells, ex-situ treatment processes to remove explosives and perchlorate from the groundwater and use of the existing Fuel Spill-12 (FS-12) infiltration gallery to return treated water to the aquifer.

Completed well installation at J3 EW0032.

2. SUMMARY OF ACTIONS TAKEN

Drilling progress as of January 13, 2006 is summarized in Table 1.

Table 1. Drilling progress as of January 13, 2006											
Boring Number	Purpose of Boring/Well	Total Depth (ft bgs)	Depth to Water Table (ft bgs)	Completed Well Screens (ft bgs)							
DP-410	Impact Area (CIADP-03)	137	129								
DP-418	Impact Area (CIADP-11)	135	122								
ft bgs = feet	below ground surface										

Completed drilling at DP-410 (CIADP-03) and DP-418 (CIADP-11). Well development of recently installed wells continued.

Samples collected and reported during the January 1-13, 2006, time period are summarized in Table 2. Groundwater profile samples were collected from DP-410 and DP-418. Groundwater samples were collected from recently installed wells and as part of the December round of the 2005 Long-Term Groundwater Monitoring (LTGM) Plan. Process water samples were collected from the Fuel Spill 12 (FS-12) ETR system influent and effluent. Soil samples (30-point composite samples) were collected as part of the Western Boundary Supplemental Investigation and from the target area and flanking locations at the Former A Range.

Pneumatic slug tests at Demo Area 2 and synoptic water level measurements at the Northwest Corner and Demo Area 2 were completed.

The following bullets summarize the Blown-in-Place (BIP) items for the month of December:

 Central Impact Area: January 12, 2006: One (1) 81 mm Projectile (at CIADP-12).

Pre- and post-BIP samples were collected in accordance with the sampling protocol.

Anomaly investigation as part of the J-1 Range Supplemental Geophysical Anomaly Investigation was not conducted during the first part of January. Table 3 showing a grid sheet summary for excavations and munitions recovered for the J-1 Range Geophysical Investigation will be included in the January Monthly Progress Report.

Anomaly investigation as part of the J-2 Range Supplemental Geophysical Anomaly Investigation continued at Grids M-20 and N-19. Table 4 showing a grid sheet summary for excavations and munitions recovered for the J-2 Range Geophysical Investigation will be included in the January Monthly Progress Report.

There have been no munitions and explosives of concern (MEC) items destroyed in the controlled detonation chamber (CDC) during early January.

The following are the notes from the January 12, 2006 Technical Team meeting of the Impact Area Groundwater Study Program office at Camp Edwards:

Southeast Ranges – Investigation Update

- Dave Hill (IAGWSP) provided a brief update on the J-1 South groundwater investigations.
 Real estate access initiatives are underway at USACE. Drive points locations in the
 presumed source area are not considered to be the priority locations at this time, and
 locations outside the source area will be prioritized. Jane Dolan (USEPA) requested to be
 kept abreast of progress with these locations.
- IAGWSP has a meeting with the town administrator on 1/13/06, to discuss permission to drill at the proposed Snake Pond drive point locations.
- ROA paperwork for the J-2 East location (J2P-59) was submitted on 12/23/05.
- Southeast Ranges J-2 North Rapid Response Action (RRA) Performance Monitoring and Evaluation (PME) Plan – Comment Resolution Meeting (CRM)
- The following responses from the IAGWSP's 12/07/05 Response to Comment Letter (RCL) were discussed.
 - MADEP Specific Comment 1: Len Pinaud (MADEP) stated that the response to this comment (regarding adherence to the substantive requirements of the Massachusetts Contingency Plan) is not acceptable. A letter is forthcoming to clarify this issue.
 - USEPA Various Comments: A discussion of USEPA comments ensued, with some clarifications provided by Mike Goydas (ECC). Concurrence was achieved on all technical issues and Mr. Hill stated that a draft memorandum of resolution (MOR) will be provided the week of 1/16/06.
 - A draft Memorandum of Resolution (MOR) documenting the above CRM issues will be prepared the week of 1/16/06.

Southeast Ranges - J-2 Geophysical Investigation - History, Status, and Path Forward

- Dave Hill (IAGWSP) led a discussion on the history and status of the J-2 Range geophysical investigations, relating to the recent document submittal, Final J-2 Range Supplemental Geophysical Anomaly Report for the J-2 Range Priority 1 Grids Technical Memorandum, dated December 19, 2005. The current J-2 Range Geophysical Anomaly Investigation Work Plan identifies prioritized grids based primarily on previous geophysical survey data and investigations. The grids are arranged in four prioritization groups: Priority 1, 2, 3, and Non-priority. Intrusive investigation of priority 1 grids has been conducted in 2005, and summarized in the technical memorandum.
- The content of the technical memorandum (TM) also includes information on the development of an alternative screening procedure, Geophysical Signature Analysis, developed by Sky Research, Inc. The Army believes that this approach can better focus investigations on disposal pits, which appear to be the most significant sources of groundwater contamination. The TM proposes that additional intrusive investigations at the J-2 Range focus on locating and removing disposal pits identified in the document in lieu of the Priority 2 and 3 grids previously identified in the J-2 Range Geophysical Anomaly Investigation Work Plan.
- Lynne Jennings (USEPA) expressed concern about this change in approach and asked that
 the data used to develop the Geophysical Signature Analysis be provided to USEPA so that
 a more thorough review and evaluation of the approach can be performed prior to making a
 change. It was agreed that intrusive investigations can continue where overlap exists
 between the Priority 2 grids and the disposal pits identified in the Geophysical Signature
 Analysis, however, USEPA does not concur with Army's recommendation to proceed with

- this new approach until the data and report is reviewed in more depth, and concurrence with this approach is agreed upon. The existing body of geophysical signature data available at the J-1 Range is being evaluated the same way as was done at the J-2 range and more than 50 potential disposal pits have been identified there.
- Darrin Smith (USACE) provided a brief update on the status of the ongoing supplemental geophysical investigation at the J-2 Range. Intrusive investigations at the 14 anomalies [later determined to be 13 anomalies] identified as potential disposal pits in the TM that lie within the previously prioritized grids (Priority 1, 2, and 3 grids) continues. Seven of these locations (locations 8, 30, 32, 20, 25, 15, and 18) have been completed to date. Investigation is ongoing at anomalies 21, 27, and 28.
- It was agreed that the statistical data used by Sky Research would be provided to EPA today (1/12/06). After the data is received and reviewed by USEPA, a technical meeting on this topic will be scheduled (within the next 1-2 weeks). In the meantime, Army will continue intrusive investigations of recently identified potential disposal pits located within Priority 2/3 grids at the J-2 and J-1 Ranges. Jane Dolan (USEPA) also requested that more detailed information on the geophysical anomaly investigation progress be provided in a detailed and timely manner.
- On related topics, USEPA requested a separate meeting on the MMR Environmental Data Management System (EDMS), relating to methods for locating and retrieving information from the system. USEPA also asked the Army to look into USEPA's perception of an increase in the frequency of forgoing pre-BIP sampling due to safety concerns.

<u>Diffusion Sampler Update - USGS</u>

- Denis LeBlanc (USGS) provided a summary of recent stable isotope profile and diffusion sampler test results. Stable isotope profile results were presented from five locations (one drive point (DP-407) and four monitoring wells) collected at depth intervals along the Snake Pond boundary. The profile results provide information on the depth to groundwater below the influence of the pond, as indicated by a greater abundance of the lighter isotope in groundwater versus pond water.
- Mr. LeBlanc also summarized diffusion sampler test results for explosives and perchlorate. Diffusion samplers are traditionally used for volatile organic compound (VOC) sample collection. In this case, the apparatus was modified for collection of water to be analyzed for explosives and perchlorate. The diffusion samplers are composed of rigid porous polyethylene tubing (7-inches in length). This material allows diffusion of explosives and perchlorate contaminants in water to occur. The tubes are initially filled with uncontaminated water, which is subsequently displaced with groundwater, as it migrates through the well screen. The diffusion samplers were placed in selected well screens (with known historical contamination) for durations between 2.5 weeks and several months. Four samplers (with 130 mL capacity) are required to fulfill volume requirements for explosives and perchlorate The water from the four diffusion samplers is composited prior to analysis. Results from the diffusion samplers were compared to standard groundwater sample collection results (using the low flow sample collection method). Fifteen wells and two field duplicates were sampled. A series of graphs were displayed showing the results from both sample collection methods. In general, the results from both sampling methods compared well. The variability observed at some locations is likely related to the extended duration of time between collection of samples by both techniques, and/or low groundwater migration rates. The diffusion sampler method offers the benefit of allowing collection at vehicular inaccessible locations.

3. SUMMARY OF DATA RECEIVED

Table 5 summarizes the detections that exceeded an EPA Maximum Contaminant Level (MCL) or Health Advisory (HA) for drinking water for explosives, or exceeded a 4 ppb concentration for perchlorate received for the period of December 22, 2005 through January 13, 2006.

Table 6 summarizes first-time validated detections of explosives below the MCL/HA for drinking water or of perchlorate below a 4 ppb concentration received from December 22, 2005 through January 13, 2006.

First time validated detections of explosives and perchlorate in groundwater compared to the MCL/HAs are summarized below:

Explosives in Groundwater Compared to MCL/HAs

For validated data received from December 22, 2005 through January 13, 2006, no wells had first-time validated detections of explosives above the MCL/HAs. One well, MW-70S (Gun & Mortar) had a first-time validated detections of RDX below the HA of 2 ppb.

Perchlorate in Groundwater Compared to MCL/HAs

For validated data received from December 22, 2005 through January 13, 2006, no wells had first-time validated detections of perchlorate above the concentration of 4 ppb. One well, MW-217M1 (J-3 Range) had a first-time validated detection of perchlorate below the concentration of 4 ppb.

Rush data received from January 1 through January 13, 2006 are summarized in Table 7. These data are for analyses that are performed on a fast turn around time, typically 1-10 days. Perchlorate and explosive analyses for monitoring wells, and perchlorate, explosive and volatile organic compound (VOC) analyses for groundwater profile samples, are conducted in this timeframe, as well as any analyses pursuant to a special request. The rush data are not validated, but are provided as an indication of the most recent preliminary results. Table 7 summarizes only detects, and does not show samples with non-detects.

The status of the explosive detections with respect to confirmation using Photo Diode Array (PDA) spectra is indicated in Table 7. PDA is a procedure that has been implemented for the explosive analysis, to reduce the likelihood of false positive identifications. Where the PDA status is "YES" in Table 7, the detected compound is verified as properly identified. Where the status is "NO", the identification of an explosive has been determined to be a false positive. Where the status is blank, PDA has not yet been used to evaluate the detection, or PDA is not applicable because the analyte is a VOC or perchlorate. Most explosive detections verified by PDA are confirmed to be present upon completion of validation.

During the reporting period January 1 to 13, 2006, no rush data with detections were received, therefore Table 7 is not included in this report.

4. DELIVERABLES SUBMITTED

Monthly Progress Report # 105 for December 2005

5. SCHEDULED ACTIONS

Scheduled actions through the end of January include groundwater sampling of recently installed wells and as part of the December round of the 2005 LTGM. The January Quarterly round of the 2006 LTGM will commence. Well development will continue for recently installed wells. Soil sampling will continue at the Former A Range. Activities conducted as part of the Demo 1 groundwater RRA, the Demo Area 1 soil RRA site restoration, the J-2 groundwater RRA, the J-3 groundwater RRA and the J-2 Range Supplemental Geophysical Anomaly Investigation will continue. Well pad construction will commence for CIADP-12.

TABLE 2 SAMPLING PROGRESS INTERIM MONTHLY 12/30/2005 - 01/13/2006

SAMPLE_ID	GIS_LOCID	AOC	LOGDATE	SAMP_TYPE	SBD	SED	BWTS	BWTE
SSFAFTA02_C	SSFAFTA02	FORMER A	01/13/2006	30 point compos	0	0.5		
SSFAFTA03_C	SSFAFTA03	FORMER A	01/13/2006	30 point compos	0	0.5		
SSFAFTA04_C	SSFAFTA04	FORMER A	01/13/2006	30 point compos	0	0.5		
SSFAFTA06_C	SSFAFTA06	FORMER A	01/11/2006	30 point compos	0	0.5		
SSFAFTA10_C	SSFAFTA10	FORMER A	01/11/2006	30 point compos	0	0.5		
SSFATA01_C	SSFATA01	FORMER A	01/11/2006	30 point compos	0	0.5		
SSFATA02_C	SSFATA02	FORMER A	01/11/2006	30 point compos	0	0.5		
SSFATA04_C	SSFATA04	FORMER A	01/13/2006	30 point compos	0	0.5		
SSFATA05_C	SSFATA05	FORMER A	01/13/2006	30 point compos	0	0.5		
SSFATA08_C	SSFATA08	FORMER A	01/13/2006	30 point compos	0	0.5		
SSFATA09_C	SSFATA09	FORMER A	01/11/2006	30 point compos	0	0.5		
SSFATA09_CFD	SSFATA09	FORMER A	01/11/2006	30 point compos	0	0.5		
SSFATA10_C	SSFATA10	FORMER A	01/11/2006	30 point compos	0	0.5		
SSFATA11_C	SSFATA11	FORMER A	01/11/2006	30 point compos	0	0.5		
SSFATA14_C	SSFATA14	FORMER A	01/11/2006	30 point compos	0	0.5		
SSFATA15_C	SSFATA15	FORMER A	01/13/2006	30 point compos	0	0.5		
SSWBBUNK_C	SSWB007	WESTERN BOU	01/05/2006	30 point compos	0	0.5		
SSWBBUNK_C	SSWB007	WESTERN BOU	01/05/2006	30 point compos	0	0.5		
SSWBCRATER_C	SSWB004	WESTERN BOU	01/05/2006	30 point compos	0	0.5		
SSWBCRATER_C	SSWB004	WESTERN BOU	01/05/2006	30 point compos	0	0.5		
SSWBDEPRESS_C	SSWB006	WESTERN BOU	01/05/2006	30 point compos	0	0.5		
SSWBDEPRESS_C	SSWB006	WESTERN BOU	01/05/2006	30 point compos	0	0.5		
SSWBFPIT_C	SSWB003	WESTERN BOU	01/05/2006	30 point compos	0	0.5		
SSWBFPIT_C	SSWB003	WESTERN BOU	01/05/2006	30 point compos	0	0.5		
SSWBSCHAN_C	SSWB005	WESTERN BOU	01/05/2006	30 point compos	0	0.5		
SSWBSCHAN_C	SSWB005	WESTERN BOU	01/05/2006	30 point compos	0	0.5		
SSWBSCRAP_C	SSWB002	WESTERN BOU	01/05/2006	30 point compos	0	0.5		
SSWBSCRAP_C	SSWB002	WESTERN BOU	01/05/2006	30 point compos	0	0.5		
58MW0007B-A	58MW0007B	CS-19	01/11/2006	GROUNDWATER	187.7	192.7	49	54
58MW0007B-D	58MW0007B	CS-19	01/11/2006	GROUNDWATER	187.7	192.7	49	54
58MW0009C-A	58MW0009C	CS-19	01/11/2006	GROUNDWATER	168.21	173.21	41	47
58MW0009E-A	58MW0009E	CS-19	01/11/2006	GROUNDWATER	133.4	138.4	6.5	11.5
58MW0018B-A	58MW0018	CS-19	01/11/2006	GROUNDWATER	175.9	185.58	34.55	44.55
90MW0003-A	90MW0003	L RANGE; FS-12	01/06/2006	GROUNDWATER	144	149	52.11	57.11
90MW0019-A	90MW0019	L RANGE	01/06/2006	GROUNDWATER	161	166	78	83
90MW0031-A	90MW0031	L RANGE	01/06/2006	GROUNDWATER	195.32	200.22	112	117
90MW0033-A	90MW0033	J-1 RANGE	01/12/2006	GROUNDWATER	154.73	159.69	69.78	74.74
90MW0038-A	90MW0038	L RANGE	01/04/2006	GROUNDWATER	94.75	99.62	29	34

Profiling methods may include: Volatiles, Explosives, and Perchlorate Groundwater methods include: Volatiles, Semivolatiles, Explosives, Pesticides, Herbicides, Metals, Perchlorate and Wet Chemistry

Other Sample Types methods are variable

SBD = Sample Begin Depth, measured in feet bgs

SED = Sample End Depth, measured in feet bgs

BWTS = Depth below water table, start depth, measured in feet

BWTE = Depth below water table, end depth, measured in feet

AOC = Area of Concern

CIA = Central Impact Area

TABLE 2 SAMPLING PROGRESS INTERIM MONTHLY 12/30/2005 - 01/13/2006

SAMPLE_ID	GIS_LOCID	AOC	LOGDATE	SAMP_TYPE	SBD	SED	BWTS	BWTE
90MW0039-A	90MW0039	L RANGE	01/04/2006	GROUNDWATER	83.74	88.6	19	23.86
90MW0041-A	90MW0041	L RANGE	01/06/2006	GROUNDWATER	125.37	130.23	31.5	36.5
90MW0042-A	90MW0042	J-1 RANGE	01/12/2006	GROUNDWATER	150.37	155.25	68.47	73.35
90MW0086B-A	90MW0086	J-1 RANGE	01/12/2006	GROUNDWATER	184	189	97.4	102.4
90MW0086C-A	90MW0086	J-1 RANGE	01/12/2006	GROUNDWATER	154.5	159.6	68.07	73.17
MW-383D-	MW-383	J-3 RANGE	01/04/2006	GROUNDWATER	297.31	307.31	191.61	201.61
MW-383M1-	MW-383	J-3 RANGE	01/04/2006	GROUNDWATER	265.89	275.89	160.19	170.19
MW-383M2-	MW-383	J-3 RANGE	01/04/2006	GROUNDWATER	150.59	160.59	44.89	54.89
W02-15M3A	02-15	WESTERN BOU	01/03/2006	GROUNDWATER	81	91	31.4	41.4
W128M1A	MW-128	J-3 RANGE	01/09/2006	GROUNDWATER	144	154	57	67
W128M2A	MW-128	J-3 RANGE	01/09/2006	GROUNDWATER	104	114	17	27
W128M2D	MW-128	J-3 RANGE	01/09/2006	GROUNDWATER	104	114	17	27
W128SSA	MW-128	J-3 RANGE	01/10/2006	GROUNDWATER	87	97	0	10
W149M1A	MW-149	CIA	01/05/2006	GROUNDWATER	237.5	247.5	136	146
W149SSA	MW-149	FORMER A	01/09/2006	GROUNDWATER	105.5	115.5	4	14
W15M1A	MW-15	CIA	01/05/2006	GROUNDWATER	163	173	55	65
W15M2A	MW-15	CIA	01/05/2006	GROUNDWATER	144	154	36	46
W168M2A	MW-168	J-1 RANGE	01/09/2006	GROUNDWATER	198	208	116	126
W206M1A	MW-206	FORMER A	01/09/2006	GROUNDWATER	178.5	188.5	19.57	29.57
W206SSA	MW-206	FORMER A	01/09/2006	GROUNDWATER	156	166	0	7
W206SSD	MW-206	FORMER A	01/09/2006	GROUNDWATER	156	166	0	7
W213M1A	MW-213	WESTERN BOU	01/04/2006	GROUNDWATER	133	143	85.01	95.01
W213M1A-QA	MW-213	WESTERN BOU	01/04/2006	GROUNDWATER	133	143	85.01	95.01
W213M1D	MW-213	WESTERN BOU	01/04/2006	GROUNDWATER	133	143	85.01	95.01
W213M2A	MW-213	WESTERN BOU	01/04/2006	GROUNDWATER	89	99	41.15	51.15
W213M2A-QA	MW-213	WESTERN BOU	01/04/2006	GROUNDWATER	89	99	41.15	51.15
W213M3A	MW-213	WESTERN BOU	01/04/2006	GROUNDWATER	77	82	29.38	34.38
W213M3A-QA	MW-213	WESTERN BOU	01/04/2006	GROUNDWATER	77	82	29.38	34.38
W218M1A	MW-218	J-3 RANGE	01/04/2006	GROUNDWATER	128	133	123	128
W218M2A	MW-218	J-3 RANGE	01/05/2006	GROUNDWATER	98	103	93	98
W218M3A	MW-218	J-3 RANGE	12/30/2005	GROUNDWATER	78	83	73	78
W218M3A	MW-218	J-3 RANGE	01/04/2006	GROUNDWATER	78	83	73	78
W223M1A	MW-223	CIA	01/11/2006	GROUNDWATER	211	221	118.79	128.79
W223M2A	MW-223	CIA	01/11/2006	GROUNDWATER	185	195	93.31	103.31
W223M2D	MW-223	CIA	01/11/2006	GROUNDWATER	185	195	93.31	103.31
W238M1A	MW-238	L RANGE	01/04/2006	GROUNDWATER	183	193	85.46	95.46
W238M2A	MW-238	L RANGE	01/04/2006	GROUNDWATER	125	135	27.55	37.55
W238M2D	MW-238	L RANGE	01/04/2006	GROUNDWATER	125	135	27.55	37.55

Profiling methods may include: Volatiles, Explosives, and Perchlorate Groundwater methods include: Volatiles, Semivolatiles, Explosives, Pesticides, Herbicides, Metals, Perchlorate and Wet Chemistry

Other Sample Types methods are variable

SBD = Sample Begin Depth, measured in feet bgs

SED = Sample End Depth, measured in feet bgs

BWTS = Depth below water table, start depth, measured in feet

BWTE = Depth below water table, end depth, measured in feet

AOC = Area of Concern

CIA = Central Impact Area

TABLE 2 SAMPLING PROGRESS INTERIM MONTHLY 12/30/2005 - 01/13/2006

SAMPLE_ID	GIS_LOCID	AOC	LOGDATE	SAMP_TYPE	SBD	SED	BWTS	BWTE
W239M1A	MW-239	J-3 RANGE	01/03/2006	GROUNDWATER	180	190	159.8	169.8
W239M1D	MW-239	J-3 RANGE	01/03/2006	GROUNDWATER	180	190	159.8	169.8
W239M2A	MW-239	J-3 RANGE/L RA	01/03/2006	GROUNDWATER	150	160	129.85	139.85
W239M3A	MW-239	L RANGE	01/03/2006	GROUNDWATER	60	70	39.85	49.85
W266M2A	MW-266	CIA/J-1 RANGE	01/05/2006	GROUNDWATER	239	249	92.26	102.26
W267M1A	MW-267	WESTERN BOU	01/03/2006	GROUNDWATER	248	258	18.57	28.57
W267M1A-QA	MW-267	WESTERN BOU	01/03/2006	GROUNDWATER	248	258	18.57	28.57
W268M1A	MW-268	WESTERN BOU	01/03/2006	GROUNDWATER	97	107	47.75	57.75
W268M1D	MW-268	WESTERN BOU	01/03/2006	GROUNDWATER	97	107	47.75	57.75
W283M1A	MW-283	NW CORNER	01/09/2006	GROUNDWATER	38	48	29.12	39.12
W283M1A-QA	MW-283	NW CORNER	01/09/2006	GROUNDWATER	38	48	29.12	39.12
W284M1A	MW-284	NW CORNER	01/03/2006	GROUNDWATER	115	125	90.55	100.55
W284M2A	MW-284	NW CORNER	01/03/2006	GROUNDWATER	45	55	21.2	31.2
W284M2A-QA	MW-284	NW CORNER	01/03/2006	GROUNDWATER	45	55	21.2	31.2
W285M1A	MW-285	WESTERN BOU	01/05/2006	GROUNDWATER	179	189	1.49	11.49
W316SSA	MW-316	WESTERN BOU	01/05/2006	GROUNDWATER	185	195	0	10
W338M2A	MW-338	NW CORNER	01/12/2006	GROUNDWATER	119	129	45.75	55.75
W338SSA	MW-338	NW CORNER	01/12/2006	GROUNDWATER	72	82	0	8.76
W343M1A	MW-343	J-3 RANGE	01/10/2006	GROUNDWATER	215	225	121.83	131.83
W343M2A	MW-343	J-3 RANGE	01/10/2006	GROUNDWATER	167	172	73.82	78.82
W343M3A	MW-343	J-3 RANGE	01/10/2006	GROUNDWATER	110	120	17.12	27.12
W82DDA	MW-82	WESTERN BOU	01/10/2006	GROUNDWATER	125	135	97	107
W82M1A	MW-82	WESTERN BOU	01/10/2006	GROUNDWATER	104	114	76	86
W82M1D	MW-82	WESTERN BOU	01/10/2006	GROUNDWATER	104	114	76	86
W82M2A	MW-82	WESTERN BOU	01/10/2006	GROUNDWATER	78	88	50	60
W82M3A	MW-82	WESTERN BOU	01/10/2006	GROUNDWATER	54	64	26	36
W82SSA	MW-82	WESTERN BOU	01/10/2006	GROUNDWATER	25	35	0	10
W87M1A	MW-87	CIA	01/12/2006	GROUNDWATER	194	204	62	72
W87M2A	MW-87	CIA	01/12/2006	GROUNDWATER	169	179	37	47
FS12TSEF-A	FS12TSEF		01/06/2006	PROCESS WATER	0	0		
FS12TSIN-A	FS12TSIN		01/06/2006	PROCESS WATER	0	0		
DP-410-01	DP-410	CIA	01/12/2006	PROFILE	132	137	3	8
DP-418-01	DP-418	CIA	01/13/2006	PROFILE	130	135	8.7	13.7
ECC122905CIADP01 (pre)	SSCIADP002	CIA	01/12/2006	SOIL GRAB	0	0.25		
ECC122905CIADP01 (pre)	SSCIADP002	CIA	01/12/2006	SOIL GRAB	0	0.25		
ECC122905CIADP01 (post)	SSCIADP002	CIA	01/12/2006	SOIL GRID	0	0.25		
ECC122905CIADP01 (post)	SSCIADP002	CIA	01/12/2006	SOIL GRID	0	0.25		

Profiling methods may include: Volatiles, Explosives, and Perchlorate Groundwater methods include: Volatiles, Semivolatiles, Explosives, Pesticides, Herbicides, Metals, Perchlorate and Wet Chemistry

Other Sample Types methods are variable

SBD = Sample Begin Depth, measured in feet bgs

SED = Sample End Depth, measured in feet bgs

BWTS = Depth below water table, start depth, measured in feet

BWTE = Depth below water table, end depth, measured in feet

AOC = Area of Concern

CIA = Central Impact Area

Page 1 of 1

TABLE 5 VALIDATED DETECTS EXCEEDING MCLs OR HEALTH ADVISORY LIMITS INTERIM MONTHLY DATA RECEIVED 12/22/05-1/13/06

WELL/LOCID	SAMPLE ID	SAMPLED	AOC	METHOD	ANALYTE	CONC.	FLAG	UNITS	BWTS	BWTE	DW_LIMIT	>DW_LI	MIT
MW-176	W176M1A	09/29/2005	CIA	8330NX	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-T	8	J	UG/L	158.55	168.55	2	X	
MW-235	W235M1A	09/29/2005	CIA	8330NX	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-T	44		UG/L	25.3	35.3	2	X	

TABLE 6 VALIDATED DETECTS BELOW MCLs OR HEALTH ADVISORY LIMITS NOT PREVIOUSLY DETECTED INTERIM MONTHLY DATA RECEIVED 12/22/05-1/13/06

WELL/LOCID	SAMPLE ID	SAMPLED	AOC	METHOD	ANALYTE	CONC.	FLAG	UNITS	BWTS	BWTE	DW_LIMIT	DW_LIMI
WL70S	W70SSA	10/17/2005	GUN & MORTAR	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-T	0.3	J	UG/L	4	14	2	
WL70S	W70SSD	10/17/2005	GUN & MORTAR	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-T	0.26	J	UG/L	4	14	2	
WL217M1	W217M1A	10/04/2005	J-3 RANGE	E314.0	PERCHLORATE	0.41	J	UG/L	143	148	4	