INTERIM MONTH REPORT FOR NOVEMBER 1 – NOVEMBER 12, 2004

EPA REGION I ADMINISTRATIVE ORDERS SDWA 1-97-1019 and 1-2000-0014

MASSACHUSETTS MILITARY RESERVATION TRAINING RANGE AND IMPACT AREA

The following summary of progress is for the period from November 1 through November 12, 2004.

1. SUMMARY OF REMEDIATION ACTIONS

The following is a description of remediation actions taken as part of or in preparation for Rapid Response Action (RRA) Plans for various Areas of Concern at Camp Edwards through November 12, 2004. A Rapid Response Action is an interim action that may be conducted prior to risk assessments or remedial investigations to address a known, ongoing threat of contamination to groundwater and/or soil.

Demo Area 1 Groundwater RRA

The Demo Area 1 Groundwater RRA consists of the removal and treatment of contaminated groundwater to control further migration of explosives and perchlorate. Extraction, treatment, and recharge systems (ETR) at Frank Perkins Road and Pew Road has been designed and include single extraction wells, ex-situ treatment processes to remove explosives and perchlorate from the groundwater, and injection wells to return treated water to the aquifer.

The Pew Road ETR continues operation at a flow rate of 100 gallons per minute (gpm). Available results for the first 15 sampling events did not show any detections of contaminations of concern (COCs) in the midfluent and effluent samples. As of November 12, 2004, approximately 8.5 million gallons of water have been treated and re-injected at the Pew Road ETR System.

The Frank Perkins Road ETR continues operation at a flow rate of 220 gpm. Available results for the first 12 sampling events did not show any detections of COCs in the midfluent or effluent samples. As of November 12, 2004, approximately 12.3 million gallons of water had been treated and re-injected at the Frank Perkins Road ETR System.

Demo Area 1 Soil RRA

The Demo Area 1 Soil RRA consists of the removal of all geophysical anomalies within the perimeter road (7.4 acres) and the removal and thermal treatment of contaminated soil from in and around the Demo 1 kettle hole.

As of November 12, 2004, the total amount of soil excavated at Demo Area 1 is 16,545 cubic yards, with an additional 150 cubic yards excavated at Demo Area 1 burn pits. Excavation of burn pits and the north slope of the kettle hole continues.

Demo Area 2 Soil RRA

The Demo Area 2 Soil RRA consists of the removal and treatment or disposal of contaminated soil that is a potential source of groundwater contamination. Soil excavation has been completed and resulted in removal of 789 cubic yards of soil from Demo Area 2 sites.

Impact Area Soil RRA

The Impact Area Soil RRA consists of the removal and treatment of contaminated soil and targets at Targets 23 and 42. Remaining target areas will be addressed in a supplemental plan. Soil will be removed from Targets 23 and 42, in area of approximately 15,700 square feet, to a depth of approximately 2 feet, for a total volume of removed soil of approximately 1,160 cubic yards of soil.

During the first part of November, anomaly removal was conducted at Target 23 and at previously excavated Target 42 soils. To date, 570 cubic yards have been removed from Target 23 and 544 cubic yards have been removed from Target 42 and transferred to the Demo Area 1 staging area for treatment in the TTU.

J-2 Range Soil RRA

The J-2 Range Soil RRA consists of the removal and treatment of soil in six general areas within the J-2 Range that contain selected explosives and perchlorate. Soil will be removed from the Twin Berms Area, Berm 2, Berm 5, Fixed Firing Points 3 and 4 (FFP-3 and 4) and adjacent Range Road Burn Area (RRBA), Disposal Area 1, and Disposal Area 2. Based on modifications made during finalization of the RRA Workplan, the proposed removal and treatment scope increased to a total removal approximated at 93,835 square feet and 5,361 cubic yards to a maximum depth of 2.5 feet. Soil will be treated in the Thermal Treatment Unit.

UXO clearance was conducted at Polygon 2 and target control pits. Excavation continued in Polygon 2 and the anomaly west of Polygon 1. A total of 5,523 cubic yards of soil has been excavated and transported to Demo Area 1 staging area for treatment in the Thermal Treatment Unit.

J-3 Range Soil RRA

The J-3 Range Soil RRA consists of the removal and treatment of contaminated soil from two general areas, referred to as the Demolition Area and the Melt/Pour Facility Area. At the Demolition Area, located in the middle of the J-3 Range, soil will be removed from the Detonation Pit, the Burn Box, and the area in the vicinity of Target 2, with total soil removal approximated at 14,000 square feet and 1,300 cubic yards of soil to a maximum depth of 3 feet. At the Melt/Pour Facility, located in the southern portion of the range, approximately 1,000 cubic yards of soil will be removed from an area encompassing approximately 8,800 square feet, to a maximum depth of 6 feet. Soil will be treated in the Thermal Treatment Unit.

Excavation of stained soils resumed at the area south of the Detonation Pit. The vertical extent of staining was excavated. Additional excavation will be required to determine the horizontal extent of stained soil observed in the sidewall under the concrete flight line. Excavation for a third (one foot) lift in the western portion of the Detonation Pit was completed. A total of 2,558 cubic yards of soils has been excavated from J-3 Range RRA sites and transported to the Demo Area 1 soil stockpile area.

2. SUMMARY OF ACTIONS TAKEN

Drilling progress as of November 12, 2004 is summarized in Table 1.

	Table 1. Drilling progress as	s of Nove	mber 12, 2004	
Boring Number	Purpose of Boring/Well	Total Depth (ft bgs)	Depth to Water Table (ft bgs)	Completed Well Screens (ft bgs)
MW-355	J-2 Range (J2P-47)	335	93	93-103; 220-230
MW-357	J-2 Range (J2P-48)	332	101	
MW-358	J-2 Range (J2P-50)	349	101	
MW-359	J-3 Range (J3P-39)	100		
bgs = below	ground surface			

Completed well installation at MW-355 (J2P-47). Completed drilling at MW-357 (J2P-48) and MW-358 (J2P-50). Commenced drilling at MW-359 (J3P-39). Well development continued for recently installed wells.

Samples collected during the reporting period are summarized in Table 2. Groundwater profile samples were collected from MW-357 and MW-358. Groundwater samples were collected from Bourne water supply and monitoring wells, recently installed wells, Northwest Corner monthly monitoring wells, and as part of the August round of the 2004 Long-Term Groundwater Monitoring (LTGM) Program. The December round of the 2004 LTGM commenced. Process water samples were collected from the Pew Road and Frank Perkins Road extraction, treatment and recharge (ETR) systems. Investigation-derived waste (IDW) samples were collected from the Granular Activated Carbon (GAC) treatment system and from soil cuttings associated with recently installed wells. Pre- and post-BIP samples were collected from Transect 3 in the Impact Area. Post-excavation samples were collected from the J-2 Range, J-3 Range, Mortar Target 9, and Impact Area sites including the SCAR, High Use Target Area (HUTA) Transects 3 and 4, and along Turpentine Road. Soil samples were collected from a spoils pile located at Demo Area 1, from a soil grid at the IBC Range, and as part of lysimeter installation at HUTA I in the Impact Area. Surface water samples were collected near a public beach, a private beach, and near the spit at Snake Pond.

3. SUMMARY OF DATA RECEIVED

Table 3 summarizes the detections that exceeded an EPA Maximum Contaminant Level (MCL) or Health Advisory (HA) for drinking water for explosives, or exceeded a 4 ppb concentration for perchlorate received for the reporting period of October 29, 2004 through November 12, 2004.

Table 4 summarizes first time validated detections of explosives below the MCL/HA for drinking water or of perchlorate below a 4 ppb concentration received from October 29, 2004 through November 12, 2004.

First time validated detections of explosives and perchlorate in groundwater compared to the MCL/HAs are summarized below:

Explosives in Groundwater Compared to MCL/HAs

For validated data received from October 29, 2004 through November 12, 2004, no wells had first time validated detections of RDX above the HA. One wells, MW-144M1 (J-3 Range) had a first time validated detection of HMX below the HA.

Perchlorate in Groundwater Compared to MCL/HAs

For validated data received from October 29, 2004 through November 12, 2004, two wells, 90MW0022 (J-3 Range) and MW-321M1 (J-2 Range) had first time validated detections of perchlorate above the concentration of 4 ppb. Two wells, MW-116S (J-2 Range) and MW-128M2 (L Range) had first time validated detections of perchlorate below the concentration of 4 ppb.

Rush data are summarized in Table 5. These data are for analyses that are performed on a fast turn around time, typically 1-10 days. Perchlorate and explosive analyses for monitoring wells, and perchlorate, explosive and volatile organic compound (VOC) analyses for groundwater profile samples, are conducted in this timeframe, as well as any analyses pursuant to a special request. The rush data are not validated, but are provided as an indication of the most recent preliminary results. Table 5 summarizes only detects, and does not show samples with non-detects.

The status of the explosive detections with respect to confirmation using Photo Diode Array (PDA) spectra is indicated in Table 5. PDA is a procedure that has been implemented for the explosive analysis, to reduce the likelihood of false positive identifications. Where the PDA status is "YES" in Table 5, the detected compound is verified as properly identified. Where the status is "NO", the identification of an explosive has been determined to be a false positive. Where the status is blank, PDA has not yet been used to evaluate the detection, or PDA is not applicable because the analyte is a VOC or perchlorate. Most explosive detections verified by PDA are confirmed to be present upon completion of validation.

Table 5 includes detections from the following areas:

J-2 Range

- Profile samples from MW-357 (J2P-48) had detections of various VOCs and explosives. Of the explosives detections, 3-nitrotoluene was confirmed by PDA spectra, but with interference, in one interval at 89 ft bwt. Well screens will be set at the depth (84 to 94 ft bwt) corresponding to the detection of 3-nitrotoluene, and at the depth (176 to 186 ft bwt) corresponding to MW-334M1.
- Profile samples from MW-358 (J2P-50) had detections of various VOCs. Tetrachloroethene (PCE) was detected in eleven intervals from 19 to 119 ft bwt. Well screens will be set at the depth (77 to 87 ft bwt) corresponding to the highest PCE detection, and at the depth (129 to 139 ft bwt) corresponding to the depth of a forward particle track from MW-319M2 and bounding the deepest PCE detection.

Demo Area 1

- A process water sample collected from the Frank Perkins Road ETR system influent (FPR-INF) had detections of RDX, HMX and perchlorate. The detections of RDX and HMX were confirmed by PDA spectra.
- A process water sample collected from the Pew Road ETR system influent (PR-INF) had a detection of perchlorate.

4. DELIVERABLES SUBMITTED

Monthly Progress Report # 91 for October 2004

11/09/2004

5. SCHEDULED ACTIONS

Scheduled actions through the end of November include complete well installation at MW-358 (J2P-50), complete drilling at MW-359 (J3P-39) and commence drilling at MW-356 (J3P-44). Groundwater sampling of Bourne water supply and monitoring wells, recently installed wells, and as part of the December round of the 2004 LTGM Program will continue. Groundwater sampling will be completed as part of the August round of the 2004 LTGM Program. Post-excavation soil sampling will continue at excavated BIP craters. Anomaly removal at Demo Area 1, soil excavation at Target 42 in the Impact Area, and lysimeter installation at the HUTA I will continue.

SAMPLE_ID	GIS_LOCID	LOGDATE	SAMP_TYPE	SBD	SED	BWTS	BWTE
HCA10270402BG	A10270402	11/01/2004	CRATER GRAB	0	0.16		
HDA10270402AA	A10270402	11/05/2004	CRATER GRID	0	0.16		
4036000-01G-A	4036000-01G	11/01/2004	GROUNDWATER	38	69.8	6	12
4036000-01G-A	4036000-01G	11/08/2004	GROUNDWATER	38	69.8	6	12
4036000-04G-A	4036000-04G	11/01/2004	GROUNDWATER	54.6	64.6	6	12
4036000-04G-A	4036000-04G	11/08/2004	GROUNDWATER	54.6	64.6	6	12
4036000-06G-A	4036000-06G	11/01/2004	GROUNDWATER	108	128	6	12
4036000-06G-A	4036000-06G	11/08/2004	GROUNDWATER	108	128	6	12
58MW0001-A	58MW0001	11/04/2004	GROUNDWATER	121.8	126.8	0	5
58MW0002-A	58MW0002	11/04/2004	GROUNDWATER	121.2	126.2	0	5
58MW0003-A	58MW0003	11/08/2004	GROUNDWATER	119	124	0	5
58MW0015A-A	58MW0015	11/08/2004	GROUNDWATER	160.68	169.94	36	45
58MW0015B-A	58MW0015	11/08/2004	GROUNDWATER	130.96	140.22	12.7	22.7
58MW0016A-A	58MW0016	11/05/2004	GROUNDWATER	175.9	185.05	54.22	63.22
58MW0016B-A	58MW0016	11/05/2004	GROUNDWATER	151.09	160.74	28.5	38.5
58MW0016C-A	58MW0016	11/05/2004	GROUNDWATER	116.7	126.33	0	10
58MW0016C-D	58MW0016	11/05/2004	GROUNDWATER	116.7	126.33	0	10
97-2C-A	97-2C	11/11/2004	GROUNDWATER	132	132	68	68
97-2D-A	97-2D	11/11/2004	GROUNDWATER	115.4	115.4	82.9	82.9
97-2F-A	97-2F	11/11/2004	GROUNDWATER	120	120	76.7	76.7
MW-290M1-	MW-290M1	11/02/2004	GROUNDWATER	244.92	254.92	150.12	160.12
MW-290M2-	MW-290M2	11/02/2004	GROUNDWATER	214.98	224.98	120.18	130.18
MW-290M3-	MW-290M3	11/03/2004	GROUNDWATER	144.47	155.17	49.67	60.37
MW-290S-	MW-290S	11/02/2004	GROUNDWATER	100.1	110.15	5.3	15.35
MW-300M1-	MW-300M1	11/04/2004	GROUNDWATER	293.03	303.02	190.18	200.17
MW-300M2-	MW-300M2	11/04/2004	GROUNDWATER	197.23	207.23	94.38	104.38
MW-300M2-FD	MW-300M2	11/04/2004	GROUNDWATER	197.23	207.23	94.38	104.38
MW-300M3-	MW-300M3	11/04/2004	GROUNDWATER	135.31	145.31	32.46	42.46
MW-305M1-	MW-305M1	11/03/2004	GROUNDWATER	202.82	212.82	99.82	109.82
MW-331M1-	MW-331M1	11/04/2004	GROUNDWATER	235	245	121	131
MW-331M2-	MW-331M2	11/04/2004	GROUNDWATER	195	205	81	91
MW-348M1-	MW-348M1	11/03/2004	GROUNDWATER	288.46	298.46	171.46	181.46
MW-348M2-	MW-348M2	11/03/2004	GROUNDWATER	206.54	216.54	89.54	99.54
W02-03M1A	02-03	11/11/2004	GROUNDWATER	130	140	86.1	96.1
W02-03M2A	02-03	11/11/2004	GROUNDWATER	92	102	48.15	58.15
W02-03M3A	02-03	11/11/2004	GROUNDWATER	75	85	31.05	41.05
W02-12M1A	02-12	11/11/2004	GROUNDWATER	109	119	58.35	68.35
W02-12M1A-QA	02-12	11/11/2004	GROUNDWATER	109	119	58.35	68.35
W02-12M2A	02-12	11/11/2004	GROUNDWATER	94	104	43.21	53.21
W02-12M2A-QA	02-12	11/11/2004	GROUNDWATER	94	104	43.21	53.21
W02-12M3A	02-12	11/11/2004	GROUNDWATER	79	89	28.22	38.22

Profiling methods may include: Volatiles, Explosives, and Perchlorate Groundwater methods include: Volatiles, Semivolatiles, Explosives, Pesticides, Herbicides, Metals, Perchlorate and Wet Chemistry

Other Sample Types methods are variable

SBD = Sample Begin Depth, measured in feet bgs

SED = Sample End Depth, measured in feet bgs

BWTS = Depth below water table, start depth, measured in feet

SAMPLE_ID	GIS_LOCID	LOGDATE	SAMP_TYPE	SBD	SED	BWTS	BWTE
W02-12M3A-QA	02-12	11/11/2004	GROUNDWATER	79	89	28.22	38.22
W02M2A	MW-2	11/09/2004	GROUNDWATER	170	175	33	38
W106M1A	MW-106	11/08/2004	GROUNDWATER	170.5	180.5	38	48
W112M1A	MW-112	11/09/2004	GROUNDWATER	195	205	56	66
W112M2A	MW-112	11/09/2004	GROUNDWATER	165	175	26	36
W113M1A	MW-113	11/05/2004	GROUNDWATER	240	250	98	108
W113M2A	MW-113	11/05/2004	GROUNDWATER	190	200	48	58
W141M1A	MW-141	11/10/2004	GROUNDWATER	190	200	62	72
W141M1A-QA	MW-141	11/10/2004	GROUNDWATER	190	200	62	72
W141M2A	MW-141	11/10/2004	GROUNDWATER	162	172	34	44
W141M2A-QA	MW-141	11/10/2004	GROUNDWATER	162	172	34	44
W141SSA	MW-141	11/10/2004	GROUNDWATER	128	138	0	10
W141SSA-QA	MW-141	11/10/2004	GROUNDWATER	128	138	0	10
W179DDA	MW-179	11/09/2004	GROUNDWATER	329	339	188.1	198.1
W179M1A	MW-179	11/10/2004	GROUNDWATER	187	197	46.1	56.1
W179M1D	MW-179	11/10/2004	GROUNDWATER	187	197	46.1	56.1
W249M3A	MW-249	11/09/2004	GROUNDWATER	154	164	12.9	22.9
W249M3D	MW-249	11/09/2004	GROUNDWATER	154	164	12.9	22.9
W277M1A	MW-277	11/02/2004	GROUNDWATER	130	140	26.3	36.3
W277SSA	MW-277	11/02/2004	GROUNDWATER	102	112	0	10
W278M1A	MW-278	11/03/2004	GROUNDWATER	113	123	25.76	35.76
W278M1D	MW-278	11/03/2004	GROUNDWATER	113	123	25.76	35.76
W278M2A	MW-278	11/03/2004	GROUNDWATER	97	102	9.79	14.79
W279M1A	MW-279	11/02/2004	GROUNDWATER	96	106	37.4	47.4
W279M2A	MW-279	11/02/2004	GROUNDWATER	83	88	26.8	31.8
W279SSA	MW-279	11/03/2004	GROUNDWATER	66	76	10	20
W352M1A	MW-352	11/03/2004	GROUNDWATER	115	125	96.7	106.7
W352M2A	MW-352	11/03/2004	GROUNDWATER	65	75	46.63	56.63
W352M3A	MW-352	11/03/2004	GROUNDWATER	43	53	25.3	35.3
W352M3D	MW-352	11/03/2004	GROUNDWATER	43	53	25.3	35.3
W38DDA	MW-38	11/08/2004	GROUNDWATER	242	252	124	134
W38M1A	MW-38	11/05/2004	GROUNDWATER	217	227	99	109
W38M2A	MW-38	11/05/2004	GROUNDWATER	187	197	69	79
W38M3A	MW-38	11/04/2004	GROUNDWATER	170	180	52	62
W38M4A	MW-38	11/05/2004	GROUNDWATER	132	142	14	24
W44M1A	MW-44	11/10/2004	GROUNDWATER	182	192	53	63
W44SSA	MW-44	11/10/2004	GROUNDWATER	123	133	0	10
W91M1A	MW-91	11/10/2004	GROUNDWATER	170	180	45	55
W91M1A-QA	MW-91	11/10/2004	GROUNDWATER	170	180	45	55
W91SSA	MW-91	11/12/2004	GROUNDWATER	124	134	0	10
W91SSA-QA	MW-91	11/12/2004	GROUNDWATER	124	134	0	10

Profiling methods may include: Volatiles, Explosives, and Perchlorate Groundwater methods include: Volatiles, Semivolatiles, Explosives, Pesticides, Herbicides, Metals, Perchlorate and Wet Chemistry

Other Sample Types methods are variable SBD = Sample Begin Depth, measured in feet bgs

SED = Sample End Depth, measured in feet bgs

BWTS = Depth below water table, start depth, measured in feet

SAMPLE_ID	GIS_LOCID	LOGDATE	SAMP_TYPE	SBD	SED	BWTS	BWTE
W92SSA	MW-92	11/09/2004	GROUNDWATER	139	149	0	10
W93M1A	MW-93	11/12/2004	GROUNDWATER	185	195	56	66
W93M1A-QA	MW-93	11/12/2004	GROUNDWATER	185	195	56	66
W93M2A	MW-93	11/12/2004	GROUNDWATER	145	155	16	26
W93M2A-QA	MW-93	11/12/2004	GROUNDWATER	145	155	16	26
W98M1A	MW-98	11/09/2004	GROUNDWATER	164	174	26	36
W98M1D	MW-98	11/09/2004	GROUNDWATER	164	174	26	36
W98SSA	MW-98	11/09/2004	GROUNDWATER	137	147	0	10
W99M1A	MW-99	11/08/2004	GROUNDWATER	195	205	60	70
W99M1D	MW-99	11/08/2004	GROUNDWATER	195	205	60	70
W99SSA	MW-99	11/09/2004	GROUNDWATER	133	143	0	10
DW110304-NV	GAC WATER	11/03/2004	IDW	0	0		
DW110504-NV	GAC WATER	11/05/2004	IDW	0	0		
SC33801	SOIL CUTTINGS	11/12/2004	IDW	0	0		
SC34101	SOIL CUTTINGS	11/12/2004	IDW	0	0		
FPR-EFF-12A	FPR-EFF	11/02/2004	PROCESS WATER	0	0		
FPR-EFF-13A	FPR-EFF	11/09/2004	PROCESS WATER	0	0		
FPR-EFF-13A	FPR-EFF	11/10/2004	PROCESS WATER	0	0		
FPR-EFF-A-12A	FPR-EFF	11/02/2004	PROCESS WATER	0	0		
FPR-EFF-A-12B	FPR-EFF	11/02/2004	PROCESS WATER	0	0		
FPR-EFF-A-13A	FPR-EFF	11/09/2004	PROCESS WATER	0	0		
FPR-EFF-A-13B	FPR-EFF	11/09/2004	PROCESS WATER	0	0		
FPR-EFF-B-12A	FPR-EFF	11/02/2004	PROCESS WATER	0	0		
FPR-EFF-B-12B	FPR-EFF	11/02/2004	PROCESS WATER	0	0		
FPR-EFF-B-13A	FPR-EFF	11/09/2004	PROCESS WATER	0	0		
FPR-EFF-B-13B	FPR-EFF	11/09/2004	PROCESS WATER	0	0		
FPR-EFF-C-12A	FPR-EFF	11/02/2004	PROCESS WATER	0	0		
FPR-EFF-C-12B	FPR-EFF	11/02/2004	PROCESS WATER	0	0		
FPR-EFF-C-13A	FPR-EFF	11/09/2004	PROCESS WATER	0	0		
FPR-EFF-C-13B	FPR-EFF	11/09/2004	PROCESS WATER	0	0		
FPR-INF-12A	FPR-INF	11/02/2004	PROCESS WATER	0	0		
FPR-INF-13A	FPR-INF	11/10/2004	PROCESS WATER	0	0		
FPR-INF-13A	FPR-INF	11/09/2004	PROCESS WATER	0	0		
FPR-INF-A-12B	FPR-INF	11/02/2004	PROCESS WATER	0	0		
FPR-INF-A-13B	FPR-INF	11/09/2004	PROCESS WATER	0	0		
FPR-INF-B-12B	FPR-INF	11/02/2004	PROCESS WATER	0	0		
FPR-INF-B-13B	FPR-INF	11/09/2004	PROCESS WATER	0	0		
FPR-INF-C-12B	FPR-INF	11/02/2004	PROCESS WATER	0	0		
FPR-INF-C-13B	FPR-INF	11/09/2004	PROCESS WATER	0	0		
FPR-MID-1A-12A	FPR-MID-1	11/02/2004	PROCESS WATER	0	0		
FPR-MID-1A-13A	FPR-MID-1	11/09/2004	PROCESS WATER	0	0		

Profiling methods may include: Volatiles, Explosives, and Perchlorate Groundwater methods include: Volatiles, Semivolatiles, Explosives, Pesticides, Herbicides, Metals, Perchlorate and Wet Chemistry

Other Sample Types methods are variable

SBD = Sample Begin Depth, measured in feet bgs

SED = Sample End Depth, measured in feet bgs

BWTS = Depth below water table, start depth, measured in feet

SAMPLE_ID	GIS_LOCID	LOGDATE	SAMP_TYPE	SBD	SED	BWTS	BWTE
FPR-MID-1B-12A	FPR-MID-1	11/02/2004	PROCESS WATER	0	0		
FPR-MID-1B-13A	FPR-MID-1	11/09/2004	PROCESS WATER	0	0		
FPR-MID-1C-12A	FPR-MID-1	11/02/2004	PROCESS WATER	0	0		
FPR-MID-1C-13A	FPR-MID-1	11/09/2004	PROCESS WATER	0	0		
FPR-MID-2A-12A	FPR-MID-2	11/02/2004	PROCESS WATER	0	0		
FPR-MID-2A-13A	FPR-MID-2	11/09/2004	PROCESS WATER	0	0		
FPR-MID-2B-12A	FPR-MID-2	11/02/2004	PROCESS WATER	0	0		
FPR-MID-2B-13A	FPR-MID-2	11/09/2004	PROCESS WATER	0	0		
FPR-MID-2C-12A	FPR-MID-2	11/02/2004	PROCESS WATER	0	0		
FPR-MID-2C-13A	FPR-MID-2	11/09/2004	PROCESS WATER	0	0		
PR-EFF-16A	PR-EFF	11/10/2004	PROCESS WATER	0	0		
PR-INF-16A	PR-INF	11/10/2004	PROCESS WATER	0	0		
PR-MID-1-16A	PR-MID-1	11/10/2004	PROCESS WATER	0	0		
PR-MID-2-16A	PR-MID-2	11/10/2004	PROCESS WATER	0	0		
MW-357-07	MW-357	11/01/2004	PROFILE	160	160	59	59
MW-357-09	MW-357	11/02/2004	PROFILE	170	170	69	69
MW-357-10	MW-357	11/02/2004	PROFILE	180	180	79	79
MW-357-11	MW-357	11/03/2004	PROFILE	190	190	89	89
MW-357-12	MW-357	11/03/2004	PROFILE	200	200	99	99
MW-357-13	MW-357	11/03/2004	PROFILE	210	210	109	109
MW-357-13FD	MW-357	11/03/2004	PROFILE	210	210	109	109
MW-357-14	MW-357	11/03/2004	PROFILE	220	220	119	119
MW-357-15	MW-357	11/03/2004	PROFILE	230	230	129	129
MW-357-16	MW-357	11/03/2004	PROFILE	240	240	139	139
MW-357-17	MW-357	11/03/2004	PROFILE	250	250	149	149
MW-357-18	MW-357	11/03/2004	PROFILE	260	260	159	159
MW-357-19	MW-357	11/04/2004	PROFILE	270	270	169	169
MW-357-20	MW-357	11/04/2004	PROFILE	280	280	179	179
MW-357-21	MW-357	11/04/2004	PROFILE	290	290	189	189
MW-357-22	MW-357	11/04/2004	PROFILE	300	300	199	199
MW-357-23	MW-357	11/04/2004	PROFILE	310	310	209	209
MW-357-24	MW-357	11/04/2004	PROFILE	320	320	219	219
MW-357-25	MW-357	11/04/2004	PROFILE	330	330	229	229
MW-357-25FD	MW-357	11/04/2004	PROFILE	330	330	229	229
MW-358-01	MW-358	11/04/2004	PROFILE	110	115	15.5	20.5
MW-358-02	MW-358	11/04/2004	PROFILE	120	125	25.5	30.5
MW-358-03	MW-358	11/05/2004	PROFILE	130	135	35.5	40.5
MW-358-03FD	MW-358	11/05/2004	PROFILE	130 135 35.5		35.5	40.5
MW-358-04	MW-358	11/05/2004	PROFILE	140	145	45.5	50.5
MW-358-05	MW-358	11/05/2004	PROFILE	150	155	55.5	60.5
MW-358-06	MW-358	11/05/2004	PROFILE	160	165	65.5	70.5

Profiling methods may include: Volatiles, Explosives, and Perchlorate Groundwater methods include: Volatiles, Semivolatiles, Explosives, Pesticides, Herbicides, Metals, Perchlorate and Wet Chemistry

Other Sample Types methods are variable

SBD = Sample Begin Depth, measured in feet bgs

SED = Sample End Depth, measured in feet bgs

BWTS = Depth below water table, start depth, measured in feet

SAMPLE_ID	GIS_LOCID	LOGDATE	SAMP_TYPE	SBD	SED	BWTS	BWTE
MW-358-07	MW-358	11/08/2004	PROFILE	170	175	69	74
MW-358-08	MW-358	11/08/2004	PROFILE	180	185	79	84
MW-358-09	MW-358	11/08/2004	PROFILE	190	195	89	94
MW-358-10	MW-358	11/08/2004	PROFILE	200	205	99	104
MW-358-11	MW-358	11/08/2004	PROFILE	210	215	109	114
MW-358-12	MW-358	11/08/2004	PROFILE	220	225	119	124
MW-358-13	MW-358	11/09/2004	PROFILE	230	235	129	134
MW-358-14	MW-358	11/09/2004	PROFILE	240	245	139	144
MW-358-14FD	MW-358	11/09/2004	PROFILE	240	245	139	144
MW-358-15	MW-358	11/09/2004	PROFILE	250	255	149	154
MW-358-16	MW-358	11/09/2004	PROFILE	260	265	159	164
MW-358-17	MW-358	11/10/2004	PROFILE	270	275	169	174
MW-358-18	MW-358	11/10/2004	PROFILE	280	285	179	184
MW-358-19	MW-358	11/10/2004	PROFILE	290	295	189	194
MW-358-20	MW-358	11/10/2004	PROFILE	300	305	199	204
MW-358-21	MW-358	11/11/2004	PROFILE	310	315	209	214
MW-358-22	MW-358	11/11/2004	PROFILE	320	325	219	224
HD01280201PE1	J2.A.T16.007	11/01/2004	SOIL GRAB	0	0.25		
HD01280201PE1D	J2.A.T16.007	11/01/2004	SOIL GRAB	0	0.25		
HD01280201PE2	J2.A.T16.007	11/01/2004	SOIL GRAB	0	0.25		
HD01280201PE3	J2.A.T16.007	11/01/2004	SOIL GRAB	0	0.25		
HDA02200201PE1	A02200201	11/12/2004	SOIL GRAB	0	0.25		
HDA02200201PE1D	A02200201	11/12/2004	SOIL GRAB	0	0.25		
HDA02200201PE2	A02200201	11/12/2004	SOIL GRAB	0	0.25		
HDA02200201PE3	A02200201	11/12/2004	SOIL GRAB	0	0.25		
HDA08070101PE1	A08070101	11/03/2004	SOIL GRAB	0	0.25		
HDA08070101PE2	A08070101	11/03/2004	SOIL GRAB	0	0.25		
HDA08070101PE3	A08070101	11/03/2004	SOIL GRAB	0	0.25		
HDA08290202PE1	USA08290202	11/03/2004	SOIL GRAB	0	0.25		
HDA08290202PE1D	USA08290202	11/03/2004	SOIL GRAB	0	0.25		
HDA08290202PE2	USA08290202	11/03/2004	SOIL GRAB	0	0.25		
HDA08290202PE3	USA08290202	11/03/2004	SOIL GRAB	0	0.25		
HDJ281MM21PE4	J281MM21	11/01/2004	SOIL GRAB	0	0.25		
HDJ281MM21PE4D	J281MM21	11/01/2004	SOIL GRAB	0	0.25		
HDJ281MM21PE5	J281MM21	11/01/2004	SOIL GRAB	0	0.25		
HDJ281MM21PE6	J281MM21	11/01/2004	SOIL GRAB	0	0.25		
HDSR.C8.018.RPE4	SR.C8.018	11/02/2004	SOIL GRAB	0	0.25		
HDSR.C8.018.RPE5	SR.C8.018	11/02/2004	SOIL GRAB	0	0.25		
HDSR.C8.018.RPE6	SR.C8.018	11/02/2004	SOIL GRAB	0	0.25		
HDTR81MMPE1	81MM_TURP	11/10/2004	SOIL GRAB	0	0.25		
HDTR81MMPE2	81MM_TURP	11/10/2004	SOIL GRAB	0	0.25		

Profiling methods may include: Volatiles, Explosives, and Perchlorate Groundwater methods include: Volatiles, Semivolatiles, Explosives, Pesticides, Herbicides, Metals, Perchlorate and Wet Chemistry

Other Sample Types methods are variable SBD = Sample Begin Depth, measured in feet bgs

SED = Sample End Depth, measured in feet bgs

BWTS = Depth below water table, start depth, measured in feet

SAMPLE_ID	GIS_LOCID	LOGDATE	SAMP_TYPE	SBD	SED	BWTS	BWTE
HDTR81MMPE3	81MM_TURP	11/10/2004	SOIL GRAB	0	0.25		
HDTT01230201PE1	J2.A.T14A.001	11/01/2004	SOIL GRAB	0	0.25		
HDTT01230201PE2	J2.A.T14A.001	11/01/2004	SOIL GRAB	0	0.25		
HDTT01230201PE3	J2.A.T14A.001	11/01/2004	SOIL GRAB	0	0.25		
HDTT01230204PE1	J2.A.T14A.004	11/01/2004	SOIL GRAB	0	0.25		
HDTT01230204PE1D	J2.A.T14A.004	11/01/2004	SOIL GRAB	0	0.25		
HDTT01230204PE2	J2.A.T14A.004	11/01/2004	SOIL GRAB	0	0.25		
HDTT01230204PE3	J2.A.T14A.004	11/01/2004	SOIL GRAB	0	0.25		
HDTT01250201PE1	J2.A.T16.001	11/01/2004	SOIL GRAB	0	0.25		
HDTT01250201PE2	J2.A.T16.001	11/01/2004	SOIL GRAB	0	0.25		
HDTT01250201PE3	J2.A.T16.001	11/01/2004	SOIL GRAB	0	0.25		
HDTT01250202PE1	J2.A.T14A.004	11/01/2004	SOIL GRAB	0	0.25		
HDTT01250202PE2	J2.A.T14A.004	11/01/2004	SOIL GRAB	0	0.25		
HDTT01250202PE3	J2.A.T14A.004	11/01/2004	SOIL GRAB	0	0.25		
HDTT01250203PE1	J2.A.T16.003	11/02/2004	SOIL GRAB	0	0.25		
HDTT01250203PE2	J2.A.T16.003	11/02/2004	SOIL GRAB	0	0.25		
HDTT01250203PE3	J2.A.T16.003	11/02/2004	SOIL GRAB	0	0.25		
HDTT01290201PE1	T4.A.0F.001	11/12/2004	SOIL GRAB	0	0.25		
HDTT01290201PE2	T4.A.0F.001	11/12/2004	SOIL GRAB	0	0.25		
HDTT01290201PE3	T4.A.0F.001	11/12/2004	SOIL GRAB	0	0.25		
HDTT02060204PE1	T3.A.0B.001	11/02/2004	SOIL GRAB	0	0.25		
HDTT02060204PE2	T3.A.0B.001	11/02/2004	SOIL GRAB	0	0.25		
HDTT02060204PE3	T3.A.0B.001	11/02/2004	SOIL GRAB	0	0.25		
HDTT02190201PE1	T4.A.0U.005	11/12/2004	SOIL GRAB	0	0.25		
HDTT02190201PE2	T4.A.0U.005	11/12/2004	SOIL GRAB	0	0.25		
HDTT02190201PE3	T4.A.0U.005	11/12/2004	SOIL GRAB	0	0.25		
HDTT0318201PE1	T4.A.0O.012	11/12/2004	SOIL GRAB	0	0.25		
HDTT0318201PE1D	T4.A.0O.012	11/12/2004	SOIL GRAB	0	0.25		
HDTT0318201PE2	T4.A.0O.012	11/12/2004	SOIL GRAB	0	0.25		
HDTT0318201PE3	T4.A.0O.012	11/12/2004	SOIL GRAB	0	0.25		
HDTT07080203PE1	TT07080203	11/02/2004	SOIL GRAB	0	0.25		
HDTT07080203PE2	TT07080203	11/02/2004	SOIL GRAB	0	0.25		
HDTT07080203PE3	TT07080203	11/02/2004	SOIL GRAB	0	0.25		
HDTT07080205PE1	TT07080205	11/02/2004	SOIL GRAB	0	0.25		
HDTT07080205PE1D	TT07080205	11/02/2004	SOIL GRAB	0	0.25		
HDTT07080205PE2	TT07080205	11/02/2004	SOIL GRAB	0	0.25		
HDTT07080205PE3	TT07080205	11/02/2004	SOIL GRAB	0	0.25		
HDTT07080207PE1	TT07080207	11/02/2004	SOIL GRAB	0	0.25		
HDTT07080207PE2	TT07080207	11/02/2004	SOIL GRAB	0	0.25		
HDTT07080207PE3	TT07080207	11/02/2004	SOIL GRAB	0	0.25		
HDTT07290210PE1	SR.A.G12.005	11/12/2004	SOIL GRAB	0	0.25	1	1

Profiling methods may include: Volatiles, Explosives, and Perchlorate Groundwater methods include: Volatiles, Semivolatiles, Explosives, Pesticides, Herbicides, Metals, Perchlorate and Wet Chemistry

Other Sample Types methods are variable SBD = Sample Begin Depth, measured in feet bgs

SED = Sample End Depth, measured in feet bgs

BWTS = Depth below water table, start depth, measured in feet

SAMPLE_ID	GIS_LOCID	LOGDATE	SAMP_TYPE	SBD	SED	BWTS	BWTE
HDTT07290210PE1D	SR.A.G12.005	11/12/2004	SOIL GRAB	0	0.25		
HDTT07290210PE2	SR.A.G12.005	11/12/2004	SOIL GRAB	0	0.25		
HDTT07290210PE3	SR.A.G12.005	11/12/2004	SOIL GRAB	0	0.25		
HDTT08270201PE1	TT082702-01	11/12/2004	SOIL GRAB	0	0.25		
HDTT08270201PE2	TT082702-01	11/12/2004	SOIL GRAB	0	0.25		
HDTT08270201PE3	TT082702-01	11/12/2004	SOIL GRAB	0	0.25		
HDTT10020201APE1	TT10020201	11/01/2004	SOIL GRAB	0	0.25		
HDTT10020201APE2	TT10020201	11/01/2004	SOIL GRAB	0	0.25		
HDTT10020201APE3	TT10020201	11/01/2004	SOIL GRAB	0	0.25		
HDTT10020201PE1	TT10020201	11/03/2004	SOIL GRAB	0	0.25		
HDTT10020201PE1D	TT10020201	11/03/2004	SOIL GRAB	0	0.25		
HDTT10020201PE2	TT10020201	11/03/2004	SOIL GRAB	0	0.25		
HDTT10020201PE3	TT10020201	11/03/2004	SOIL GRAB	0	0.25		
HDTT1203104PE1	T3.A.AR.006	11/03/2004	SOIL GRAB	0	0.25		
HDTT1203104PE2	T3.A.AR.006	11/03/2004	SOIL GRAB	0	0.25		
HDTT1203104PE3	T3.A.AR.006	11/03/2004	SOIL GRAB	0	0.25		
HDTT1204103PE1	T3.A.AR.003	11/02/2004	SOIL GRAB	0	0.25		
HDTT1204103PE2	T3.A.AR.003	11/02/2004	SOIL GRAB	0	0.25		
HDTT1204103PE3	T3.A.AR.003	11/02/2004	SOIL GRAB	0	0.25		
HDTT12046102PE1	T3.A.AR.002	11/03/2004	SOIL GRAB	0	0.25		
HDTT12046102PE1D	T3.A.AR.002	11/03/2004	SOIL GRAB	0	0.25		
HDTT12046102PE2	T3.A.AR.002	11/03/2004	SOIL GRAB	0	0.25		
HDTT12046102PE3	T3.A.AR.002	11/03/2004	SOIL GRAB	0	0.25		
SPOIL1004BIP10A	SPOIL1004BIP10	11/04/2004	SOIL GRAB	0	0.25		
SPOIL1004BIP11A	SPOIL1004BIP11	11/04/2004	SOIL GRAB	0.5	1		
SPOIL1004BIP1A	SPOIL1004BIP1	11/04/2004	SOIL GRAB	0	0.25		
SPOIL1004BIP1D	SPOIL1004BIP1	11/04/2004	SOIL GRAB	0	0.25		
SPOIL1004BIP2A	SPOIL1004BIP2	11/04/2004	SOIL GRAB	0.5	1		
SPOIL1004BIP3A	SPOIL1004BIP3	11/04/2004	SOIL GRAB	2.5	3		
SPOIL1004BIP4A	SPOIL1004BIP4	11/04/2004	SOIL GRAB	0	0.25		
SPOIL1004BIP5A	SPOIL1004BIP5	11/04/2004	SOIL GRAB	0.5	1		
SPOIL1004BIP6A	SPOIL1004BIP6	11/04/2004	SOIL GRAB	2.5	3		
SPOIL1004BIP7A	SPOIL1004BIP7	11/04/2004	SOIL GRAB	0	0.25		
SPOIL1004BIP8A	SPOIL1004BIP8	11/04/2004	SOIL GRAB	0.5	1		
SPOIL1004BIP9A	SPOIL1004BIP9	11/04/2004	SOIL GRAB	2.5	3		
HC212J1AAA	212J	11/01/2004	SOIL GRID	0	0.25		
HC212J1BAA	212J	11/01/2004	SOIL GRID	0.25	0.5		
HD209LA1AAA	209LA	11/09/2004	SOIL GRID	5	5		
HD209LA1AAD	209LA	11/09/2004	SOIL GRID	5	5		
HD209LA2AAA	209LA	11/09/2004	SOIL GRID	10	10		
HD209LB1AAA	209LA	11/09/2004	SOIL GRID	5	5		

Profiling methods may include: Volatiles, Explosives, and Perchlorate Groundwater methods include: Volatiles, Semivolatiles, Explosives, Pesticides, Herbicides, Metals, Perchlorate and Wet Chemistry

Other Sample Types methods are variable

SBD = Sample Begin Depth, measured in feet bgs

SED = Sample End Depth, measured in feet bgs

BWTS = Depth below water table, start depth, measured in feet

SAMPLE_ID	GIS_LOCID	LOGDATE	SAMP_TYPE	SBD	SED	BWTS	BWTE
HD209LB1AAA	209LB	11/09/2004	SOIL GRID	5	5		
HD209LB2AAA	209LB	11/09/2004	SOIL GRID	14	14		
HD210LA1AAA	210LA	11/09/2004	SOIL GRID	5	5		
HD210LA2AAA	210LA	11/09/2004	SOIL GRID	14	14		
HD210LB1AAA	210LB	11/09/2004	SOIL GRID	5	5		
HD210LB2AAA	210LB	11/09/2004	SOIL GRID	10	10		
HD211LA2AAA	211LA	11/08/2004	SOIL GRID	1.66	1.83		
HD211LA3AAA	211LA	11/08/2004	SOIL GRID	7	9		
HD211LB2AAA	211LB	11/09/2004	SOIL GRID	5	5		
HD211LB3AAA	211LB	11/09/2004	SOIL GRID	5	5		
HD211LB3AAD	211LB	11/09/2004	SOIL GRID	5	5		
LKSNK0005AAA	LKSNK0005	11/11/2004	SURFACE WATER	0	0		
LKSNK0006AAA	LKSNK0006	11/11/2004	SURFACE WATER	0	0		
LKSNK0007AAA	LKSNK0007	11/11/2004	SURFACE WATER	0	0		

Profiling methods may include: Volatiles, Explosives, and Perchlorate Groundwater methods include: Volatiles, Semivolatiles, Explosives, Pesticides, Herbicides, Metals, Perchlorate and Wet Chemistry Other Sample Types methods are variable

SBD = Sample Begin Depth, measured in feet bgs

SED = Sample End Depth, measured in feet bgs

BWTS = Depth below water table, start depth, measured in feet

TABLE 3 VALIDATED DETECTS EXCEEDING MCLs OR HEALTH ADVISORY LIMITS INTERIM MONTHLY DATA RECEIVED 10/29/04-11/12/04

WELL/LOCID	SAMPLE_ID	SAMPLED	METHOD	ANALYTE	CONC.	FLAG	UNITS	BWTS	BWTE	DW_LIMIT >DW_LIMIT
58MW0009E	58MW0009E-D	08/24/2004	8330NX	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-T	5.6		UG/L	6.5	11.5	2 X
MW-215	W215M2A	09/09/2004	8330NX	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-T	2.6		UG/L	98.9	108.9	2 X
90MW0022	90MW0022-A	09/21/2004	E314.0	PERCHLORATE	4.3		UG/L	72.79	77.79	4 X
MW-321	MW-321M1-	10/14/2004	E314.0	PERCHLORATE	4.5		UG/L	69.61	79.61	4 X

TABLE 4 VALIDATED DETECTS BELOW MCLs OR HEALTH ADVISORY LIMITS NOT PREVIOUSLY DETECTED INTERIM MONTHLY DATA RECEIVED 10/29/04-11/12/04

WELL/LOCID	SAMPLE_ID	SAMPLED	METHOD	ANALYTE	CONC.	FLAG	UNITS	BWTS	BWTE	DW_LIMIT	>DW_LIMIT
WL144M1	W144M1A	09/07/2004	8330N	OCTAHYDRO-1,3,5,7-TETRANITRO-1,	0.56		UG/L	168	172	400	
WL116S	W116SSA	09/22/2004	E314.0	PERCHLORATE	0.64	J	UG/L	0	10	4	
WL128M2	W128M2A	09/16/2004	E314.0	PERCHLORATE	0.42	J	UG/L	17	27	4	

TABLE 5 DETECTED COMPOUNDS-UNVALIDATED INTERIM MONTHLY FOR 11/01/04 - 11/12/04

SAMPLE ID	LOCID OR WELL	SAMPLED	SAMP TYPE	SBD	SED	BWTS	BWTE	METHOD	ANALYTE	PDA
FPR-INF-12A	FPR-INF	11/02/2004	PROCESS WATER	0	0			8330N	OCTAHYDRO-1,3,5,7-TETRANITRO-1,3,5,7-TET	YES
FPR-INF-12A	FPR-INF	11/02/2004	PROCESS WATER	0	0			8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	YES
FPR-INF-12A	FPR-INF	11/02/2004	PROCESS WATER	0	0			E314.0	PERCHLORATE	
PR-INF-15A	PR-INF	10/28/2004	PROCESS WATER	0	0			E314.0	PERCHLORATE	
MW-357-07	MW-357	11/01/2004	PROFILE	160	160	59	59	8260B	CHLOROFORM	
MW-357-09	MW-357	11/02/2004	PROFILE	170	170	69	69	8260B	CHLOROFORM	
MW-357-09	MW-357	11/02/2004	PROFILE	170	170	69	69	8330N	NITROGLYCERIN	NO
MW-357-10	MW-357	11/02/2004	PROFILE	180	180	79	79	8260B	CHLOROFORM	
MW-357-11	MW-357	11/03/2004	PROFILE	190	190	89	89	8260B	CHLOROFORM	
MW-357-11	MW-357	11/03/2004	PROFILE	190	190	89	89	8330N	PICRIC ACID	NO
MW-357-11	MW-357	11/03/2004	PROFILE	190	190	89	89	8330N	2,6-DINITROTOLUENE	NO
MW-357-11	MW-357	11/03/2004	PROFILE	190	190	89	89	8330N	2-AMINO-4,6-DINITROTOLUENE	NO
MW-357-11	MW-357	11/03/2004	PROFILE	190	190	89	89	8330N	3-NITROTOLUENE	YES+
MW-357-11	MW-357	11/03/2004	PROFILE	190	190	89	89	8330N	4-NITROTOLUENE	NO
MW-357-11	MW-357	11/03/2004	PROFILE	190	190	89	89	8330N	NITROGLYCERIN	NO
MW-357-11	MW-357	11/03/2004	PROFILE	190	190	89	89	8330N	2,4-DINITROTOLUENE	NO
MW-357-12	MW-357	11/03/2004	PROFILE	200	200	99	99	8260B	CHLOROFORM	
MW-357-13	MW-357	11/03/2004	PROFILE	210	210	109	109	8260B	CHLOROFORM	
MW-357-13FD	MW-357	11/03/2004	PROFILE	210	210	109	109	8260B	CHLOROFORM	
MW-357-14	MW-357	11/03/2004	PROFILE	220	220	119	119	8260B	CHLOROFORM	
MW-357-15	MW-357	11/03/2004	PROFILE	230	230	129	129	8260B	CHLOROFORM	
MW-357-16	MW-357	11/03/2004	PROFILE	240	240	139	139	8260B	CHLOROFORM	
MW-357-17	MW-357	11/03/2004	PROFILE	250	250	149	149	8260B	CHLOROFORM	
MW-357-18	MW-357	11/03/2004	PROFILE	260	260	159	159	8260B	CHLOROFORM	
MW-357-19	MW-357	11/04/2004	PROFILE	270	270	169	169	8260B	CHLOROFORM	
MW-357-20	MW-357	11/04/2004	PROFILE	280	280	179	179	8260B	CHLOROFORM	
MW-357-21	MW-357	11/04/2004	PROFILE	290	290	189	189	8260B	CHLOROFORM	
MW-357-22	MW-357	11/04/2004	PROFILE	300	300	199	199	8260B	CHLOROFORM	

DATA REPORTED REFLECT CURRENT DATABASE FOR SAMPLES RECEIVED IN SPECIFIED TIMEFRAME. NOT ALL RESULTS ARE COMPLETE.

SBD = SAMPLE COLLECTION BEGIN DEPTH IN FEET BELOW GROUND SURFACE

SED = SAMPLE COLLECTION END DEPTH IN FEET BELOW GROUND SURFACE

BWTS = DEPTH BELOW WATER TABLE, START DEPTH, MEASURED IN FEET

BWTE = DEPTH BELOW WATER TABLE, END DEPTH, MEASURED IN FEET

PDA/YES = Photo Diode Array, Detect Confirmed

PDA/NO = Photo Diode Array, Detect Not Confirmed

+ = Interference in sample

TABLE 5 DETECTED COMPOUNDS-UNVALIDATED INTERIM MONTHLY FOR 11/01/04 - 11/12/04

SAMPLE ID	LOCID OR WELL	SAMPLED	SAMP TYPE	SBD	SED	BWTS	BWTE	METHOD	ANALYTE	PDA
MW-357-24	MW-357	11/04/2004	PROFILE	320	320	219	219	8260B	METHYL T-BUTYL ETHER	
MW-358-02	MW-358	11/04/2004	PROFILE	120	125	19	24	8260B	CHLOROFORM	
MW-358-02	MW-358	11/04/2004	PROFILE	120	125	19	24	8260B	TETRACHLOROETHENE (PCE)	
MW-358-03	MW-358	11/05/2004	PROFILE	130	135	29	34	8260B	TETRACHLOROETHENE (PCE)	
MW-358-03	MW-358	11/05/2004	PROFILE	130	135	29	34	8260B	CHLOROFORM	
MW-358-03FD	MW-358	11/05/2004	PROFILE	130	135	29	34	8260B	CHLOROFORM	
MW-358-03FD	MW-358	11/05/2004	PROFILE	130	135	29	34	8260B	TETRACHLOROETHENE (PCE)	
MW-358-04	MW-358	11/05/2004	PROFILE	140	145	39	44	8260B	CHLOROFORM	
MW-358-04	MW-358	11/05/2004	PROFILE	140	145	39	44	8260B	TETRACHLOROETHENE (PCE)	
MW-358-05	MW-358	11/05/2004	PROFILE	150	155	49	54	8260B	CHLOROFORM	
MW-358-05	MW-358	11/05/2004	PROFILE	150	155	49	54	8260B	TETRACHLOROETHENE (PCE)	
MW-358-06	MW-358	11/05/2004	PROFILE	160	165	59	64	8260B	CHLOROFORM	
MW-358-06	MW-358	11/05/2004	PROFILE	160	165	59	64	8260B	TETRACHLOROETHENE (PCE)	
MW-358-07	MW-358	11/08/2004	PROFILE	170	175	69	74	8260B	TETRACHLOROETHENE (PCE)	
MW-358-07	MW-358	11/08/2004	PROFILE	170	175	69	74	8260B	CHLOROFORM	
MW-358-08	MW-358	11/08/2004	PROFILE	180	185	79	84	8260B	CHLOROFORM	
MW-358-08	MW-358	11/08/2004	PROFILE	180	185	79	84	8260B	CHLOROMETHANE	
MW-358-08	MW-358	11/08/2004	PROFILE	180	185	79	84	8260B	TETRACHLOROETHENE (PCE)	
MW-358-09	MW-358	11/08/2004	PROFILE	190	195	89	94	8260B	CHLOROMETHANE	
MW-358-09	MW-358	11/08/2004	PROFILE	190	195	89	94	8260B	TETRACHLOROETHENE (PCE)	
MW-358-09	MW-358	11/08/2004	PROFILE	190	195	89	94	8260B	CHLOROFORM	
MW-358-10	MW-358	11/08/2004	PROFILE	200	205	99	104	8260B	CHLOROFORM	
MW-358-10	MW-358	11/08/2004	PROFILE	200	205	99	104	8260B	CHLOROMETHANE	
MW-358-10	MW-358	11/08/2004	PROFILE	200	205	99	104	8260B	TETRACHLOROETHENE (PCE)	
MW-358-11	MW-358	11/08/2004	PROFILE	210	215	109	114	8260B	CHLOROFORM	
MW-358-11	MW-358	11/08/2004	PROFILE	210	215	109	114	8260B	TETRACHLOROETHENE (PCE)	
MW-358-12	MW-358	11/08/2004	PROFILE	220	225	119	124	8260B	TETRACHLOROETHENE (PCE)	
MW-358-12	MW-358	11/08/2004	PROFILE	220	225	119	124	8260B	CHLOROFORM	

DATA REPORTED REFLECT CURRENT DATABASE FOR SAMPLES RECEIVED IN SPECIFIED TIMEFRAME. NOT ALL RESULTS ARE COMPLETE.

SBD = SAMPLE COLLECTION BEGIN DEPTH IN FEET BELOW GROUND SURFACE

SED = SAMPLE COLLECTION END DEPTH IN FEET BELOW GROUND SURFACE

BWTS = DEPTH BELOW WATER TABLE, START DEPTH, MEASURED IN FEET

BWTE = DEPTH BELOW WATER TABLE, END DEPTH, MEASURED IN FEET

PDA/YES = Photo Diode Array, Detect Confirmed

PDA/NO = Photo Diode Array, Detect Not Confirmed

+ = Interference in sample

TABLE 5 DETECTED COMPOUNDS-UNVALIDATED INTERIM MONTHLY FOR 11/01/04 - 11/12/04

SAMPLE ID	LOCID OR WELL	SAMPLED	SAMP TYPE	SBD	SED	BWTS	BWTE	METHOD	ANALYTE	PDA
MW-358-13	MW-358	11/09/2004	PROFILE	230	235	129	134	8260B	CHLOROFORM	
MW-358-14	MW-358	11/09/2004	PROFILE	240	245	139	144	8260B	CHLOROFORM	
MW-358-14FD	MW-358	11/09/2004	PROFILE	240	245	139	144	8260B	CHLOROFORM	
MW-358-15	MW-358	11/09/2004	PROFILE	250	255	149	154	8260B	CHLOROFORM	
MW-358-16	MW-358	11/09/2004	PROFILE	260	265	159	164	8260B	CHLOROFORM	
MW-358-17	MW-358	11/10/2004	PROFILE	270	275	169	174	8260B	CHLOROFORM	
MW-358-18	MW-358	11/10/2004	PROFILE	280	285	179	184	8260B	CHLOROFORM	
MW-358-19	MW-358	11/10/2004	PROFILE	290	295	189	194	8260B	CHLOROFORM	
MW-358-20	MW-358	11/10/2004	PROFILE	300	305	199	204	8260B	CHLOROFORM	

DATA REPORTED REFLECT CURRENT DATABASE FOR SAMPLES RECEIVED IN SPECIFIED TIMEFRAME. NOT ALL RESULTS ARE COMPLETE.

SBD = SAMPLE COLLECTION BEGIN DEPTH IN FEET BELOW GROUND SURFACE

SED = SAMPLE COLLECTION END DEPTH IN FEET BELOW GROUND SURFACE

BWTS = DEPTH BELOW WATER TABLE, START DEPTH, MEASURED IN FEET

BWTE = DEPTH BELOW WATER TABLE, END DEPTH, MEASURED IN FEET

PDA/YES = Photo Diode Array, Detect Confirmed

PDA/NO = Photo Diode Array, Detect Not Confirmed

+ = Interference in sample