INTERIM MONTH REPORT FOR JULY 1 – JULY 16, 2004

EPA REGION I ADMINISTRATIVE ORDERS SDWA 1-97-1019 and 1-2000-0014

MASSACHUSETTS MILITARY RESERVATION TRAINING RANGE AND IMPACT AREA

The following summary of progress is for the period from July 1 through July 16, 2004.

1. SUMMARY OF REMEDIATION ACTIONS

The following is a description of remediation actions taken as part of or in preparation for Rapid Response Action (RRA) Plans for various Areas of Concern at Camp Edwards through July 16, 2004. A Rapid Response Action is an interim action that may be conducted prior to risk assessments or remedial investigations to address a known, ongoing threat to groundwater and/or soil.

Demo Area 1 Groundwater RRA

The Demo Area 1 Groundwater RRA consists of the removal and treatment of contaminated groundwater to control further migration of explosives and perchlorate. An extraction, treatment, and recharge system (ETR) at Frank Perkins Road and Pew Road has been designed and includes a single extraction well, an ex-situ treatment process to remove explosives and perchlorate from the groundwater, and injection wells to return treated water to the aquifer.

Installation and development of extraction and injection wells for the Groundwater RRA is complete. Installation of subsurface piping and well vaults for the RRA Extraction, Treatment and Recharge System is substantially complete. Electrical systems have been completed for the Pew Road ETR System and are nearly completed for the Frank Perkins Road ETR System. The treatment container layout and foundation preparation is complete at both sites. The groundwater treatment containers are currently under construction at an off-site facility.

Demo Area 1 Soil RRA

The Demo Area 1 Soil RRA consists of the removal of all geophysical anomalies within the perimeter road (7.4 acres) and the removal and thermal treatment of contaminated soil from in and around the Demo 1 kettle hole. The total amount of soil to be removed and treated is approximately 15,000 cubic yards.

As part of the Soil RRA, excavation of contaminated soil within the Demo 1 depression continues. Excavation of the 7 to 8 foot lift within the kettle hole will be completed by the end of July 2004. Anomaly removal within the Demo 1 depression continues. Screening of excavated soil continues and is being transported to the thermal treatment feed area at the H Range. Full-scale thermal treatment of Demo 1 soil began on July 8, 2004.

Demo Area 2 Soil RRA

The Demo Area 2 Soil RRA consists of the removal and treatment or disposal of contaminated soil that is a potential source of groundwater contamination. Soil will be removed from a manmade berm and a 30-foot area at the center of the Demo 2 site with the total soil removal approximated at 825 tons. Soil will be treated in the Thermal Desorption Unit.

There was no activity during the past two weeks as part of the Demo Area 2 Soil RRA.

J-2 Range Soil RRA

The J-2 Range Soil RRA consists of the removal and treatment of soil in five areas within the J-2 Range that contain selected explosives and perchlorate. Soil will be removed from the Twin Berms Area, Berm 2, Fixed Firing Point 4 (FFP-4), Disposal Area 1, and Disposal Area 2, with total removal approximated at 19,039 square feet and 1,186 cubic yards to a maximum depth of 2.5 feet. Soil will be treated in the Thermal Desorption Unit.

UXO and anomaly removal at Disposal Area 2 continues in preparation of soil excavation and other RRA activities. UXO clearance has been completed in the following areas: FFP-3 and 4, the Twin Berms, the Range Road Burn Area, Disposal Area 1, Berm 2, and Berm 5. Investigation of the burn pit discovered in Grid N33 located at Disposal Area 2 was completed on 7/07/04.

J-3 Range Soil RRA

The J-3 Range Soil RRA consists of the removal and treatment of contaminated soil from two general areas, referred to as the Demolition Area and the Melt/Pour Facility Area. At the Demolition Area, located in the middle of the J-3 Range, soil will be removed from the Detonation Pit, the Burn Box, and the area in the vicinity of Target 2, with total soil removal approximated at 14,000 square feet and 1300 cubic yards of soil to a maximum depth of 3 feet. At the Melt/Pour Facility, located in the southern portion of the range, approximately 1,500 cubic yards of soil will be removed from an area encompassing approximately 9,100 square feet, to a maximum depth of 6 feet. Soil will be treated in the Thermal Desorption Unit.

Concrete removal and demolition activities continue for the Minuteman 1 Test Area (MMT1) Blocks and Target Walls in preparation of soil excavation and other RRA activities. Blow-in-place detonations were performed at the Melt/Pour facility on 05/13/2004.

2. SUMMARY OF ACTIONS TAKEN

Drilling progress as of July 16, 2004 is summarized in Table 1.

	Table 1. Drilling progres	s as of Ju	ly 16, 2004	
Boring Number	Purpose of Boring/Well	Total Depth (ft bgs)	Depth to Water Table (ft bgs)	Completed Well Screens (ft bgs)
MW-336	J-2 Range (J2P-25)	321	110	
MW-337	J-2 Range (J2P-39)	322	127	
MW-339	J-2 Range (J2P-19)	328	108	
MW-340	J-2 Range (J2P-42)	348	145	
MW-341	Demo Area 1 (D1P-24)	230	70	
MW-342	J-2 Range (J2P-41)	250	82	
bgs = below	ground surface			

Commenced drilling at MW-341 (D1P-24) and MW-342 (J2P-41). Well installation at MW-336 (J2P-25), MW-337 (J2P-39), MW-339 (J2P-19), and MW-340 (J2P-42) is scheduled for late July and August. Well development continued for recently installed wells.

Samples collected during the reporting period are summarized in Table 2. Groundwater profile samples were collected from MW-340, MW-341 and MW-342. Groundwater samples were collected from Bourne water supply and monitoring wells, park and residential wells, recently installed wells, Northwest Corner monthly monitoring wells, and as part of the April round of the Draft 2004 Long-Term Groundwater Monitoring (LTGM) Program and the July Quarterly round of the Draft 2004 LTGM. Investigation-derived waste (IDW) samples were collected from the Granular Activated Carbon (GAC) treatment system. Surface water samples were collected near a public beach, a private beach, and near the spit at Snake Pond.

The following are the notes from the July 15, 2004 Technical Team meeting of the Impact Area Groundwater Study Program office at Camp Edwards:

Punchlist Items

- #1 Provide update on ACE obtaining access agreement for new monitoring well on Schooner Pass Condo Assoc property (MADEP). Len Pinaud (MADEP) received a phone message from the facility manager who indicated the Association had decided that they did not want a well. The decision was largely a result of the language of the ROE, which seemed too restrictive. Gina Kaso (ACE) indicated that although the Army Corps' attorney had offered to speak with the Association attorney regarding the contract language and the Association's reservations, the attorney's had not spoken. Army Corps to provide a copy of the ROE to Desiree Moyer (EPA) for review.
- #3 Provide status of providing agencies an updated IDM summary table (ACE). Table emailed 7/2.
- #4 Provide current troops training schedule summary (ACE). Summary distributed at meeting.
- #5 Provide schedule for installing Lysimeters at HUTA 1 (IAGWSP). Bill Gallagher (IAGWSP) indicated this project was a low priority relative to other activities in the Central Impact Area that were maintaining exclusion zones. Therefore, the schedule for the installation had not been set. At EPA's request, Mr. Gallagher agreed to provide the EPA a few days notice prior to beginning the field work.
- #6 Update tracking sheet for Soil Thermal Treatment (ACE). Sent via email the week of July 4th

- #7 Provide list of J-2 RRA items sent to storage for disposal in the CDC (ACE). List distributed at meeting.
- Jane Dolan (EPA) inquired about the status of ROEs for monitoring wells and the Bournearea residential hook-ups to city water. Hap Gonser (IAGWSP) explained that there were two issues surrounding the ROEs. The IAGWSP's authority to obtain off-site easements has been questioned. Authority for these types of tasks is provided under CERCLA/DERP programs. Outside these programs, congressional authority is traditionally required. John McDonagh (IAGWSP) has identified an alternative authority and passed his case/recommendation onto the National Guard Bureau at the beginning of the week. Mr. Gonser to follow up with NGB next week. Secondly, the IAGWSP's ability to use OMA funds, which are provided for normal facility maintenance functions, has come into question for offsite activities (including residential well hook-ups and well installations). Mr. McDonagh has developed a legal opinion that maintains that well installation and the hook-ups are a part of continued operation and compliance for the facility and this opinion has been forwarded for review by the NGB's fiscal attorneys. The ROEs for the hook-ups have been agreed to by the residential owners and the Army Corps will be ready to proceed with the hook-ups once the funding issues are resolved. The residents have expressed that they are not in any particular hurry for the work to start prior to the end of the season.

Fieldwork Update

Frank Fedele (ACE) provided an update on the IAGWSP fieldwork.

As part of AMEC's investigation, UXO clearance continued at NWP-18. Drilling continued at MW-341(D1P-24). Well installation and development was completed at MW-338 (NWP-19b). Groundwater sampling at Western Boundary, LTM, and new wells continues. The synoptic water table measurements were completed in the Central Impact Area, Demo 1 and the NW Corner wells. Bi-weekly surface water samples were collected at Snake Pond. Well Pad restoration continued at Demo Area 1. UXO clearance for RRA excavations continues at Demo Area 2.

<u>Central Impact Area:</u> Lysimeter installation and associated soil sampling at HUTA 1 is on hold pending the completion of UXO clearance associated with the RRA activities being conducted by ECC. As part of the RRA, Target 42 was removed and staged in the HUTA 1 area. UXO clearance was completed 7/14 in the former Target 42 area. Figure showing locations of discoveries in the Target 42 area were distributed. QA/QC remains. A 3 lb chunk of TNT that was found in the target area was relocated to the CDC bunker.

<u>Demo 1 Groundwater ETR</u>: Construction work continued on the electrical service cabinet and grounding rods for the Frank Perkins Road and Pew Road ETRs. The Pew Road ITE study continued with approximately 50,000 bed volumes of groundwater treated to date.

SE Ranges. As part of ECC's investigation, UXO clearance and pad construction was completed at J2P-42 (Gibbs Loc A) and J2P-41. UXO clearance was completed at J1P-25 and J3P-46, and continues at J1P-2. Well pad installation continues at J3P-46. Drilling continues at MW-342 (J2P-41), and drilling was completed at MW-337 (J2P-39), MW-339 (J2P-19), and MW-340 (J2P-42). Screen installation was completed at MW-335 (J2P-26) and continued at MW-339 (J2P-19). Well development began at MW-335 (J2P-26) and was completed for MW-331 (J2P-40). Sampling of new wells continues.

- In support of the J-3 Range Soil RRA, Textron completed removal of the concrete Target Wall blocks and other debris in the Demolition Area. The area is now ready for excavation. MADEP's comments on the SMP are needed to keep the RRA on schedule.
- As part of the J-2 Range Soil RRA, UXO clearance continues for Disposal Area 2. Mr. Fedele provided a figure illustrating UXO clearance progress for the J-2 Range RRA. Jane Dolan (EPA) requested the entire area to be cleared be cross-hatched, not just the area in the polygons. Mr. Fedele to check to confirm that support areas have also been cleared. Clearance of the areas west of polygon 1 and north of polygon 2 remain. A burn pit was

uncovered in Grid N33. Investigation of the pit was completed on 7/7. Three grab samples were collected in the vicinity of the MK13 flares. UXO clearance has been completed in FFP 3 and 4, Twin Berms, Range Road Burn Area, Disposal Area 1, Berm 2 and Berm 5.

CDC. 22 more items from the J Ranges and Demo 1 were added to the CDC bunker The total number of items in storage for CDC disposal is now 5519. The Army Corps has contacted Huntsville to reschedule the CDC to be mobilized to MMR in the August-September timeframe.

Demo 1 Work Update

Frank Fedele (ACE) provided an update on the Demo 1 Soil RRA fieldwork.

- Two figures were provided, one showing UXO clearance progress, and the other showing excavation progress.
- Excavation in the bowl has been completed to 6 ft bgs. Anomaly removal to 7 ft is expected to begin tomorrow or Monday. Additional soil excavation will need to be completed in Girds 29 (RDX detected at 350 ppb) and 68 (Perchlorate detected at 7.2 ppb).
- Results have been received for the first 2 days of thermal treatment for Bins 1,2,3. Bins 1 and 3 passed the criteria and the soil was placed back in the bowl. Bin 2 failed the criteria and the soil has been taken back to the feed prep area for retreatment. One sample among 5 total samples collected from the bin did not meet the criteria for perchlorate. There are approximately 500 yards of soil per bin; samples are collected to represent each 100 yards of soil. Results from the sampling will be provided in the weekly Demo 1 status report.
- The thermal treatment unit operates 24 hrs/day, 7 days per week. 5500 tons of soil has been processed since last Wednesday.
- Mr. Fedele to check to see if sampling, as requested by EPA, was conducted at the Demo 1 burn pit.

ROA Status and Drilling Schedule

Darrin Smith (ACE) distributed the ROA status table and drilling schedule.

- ROA approvals were received for J1P-23, J3P-43, J3P-44 and NWP-18.
- Jane Dolan (EPA) requested that additional columns be added to the table, as had been requested previously by EPA. Ben Gregson (IAGWSP) indicated that some of the requested changes have been made, but the IAGWSP has requested clarification via email regarding the request to add dates when wells were first proposed. Ms. Dolan also wondered why the seven off-site locations for J-2 Range had not been added to the table. Gina Kaso (ACE) indicated that off-site wells were not subject to the same ROA-process as the on-site wells, and are typically not included on the table.
- Desiree Moyer (EPA) noted the agency approval for the Central Impact Area had already been provided, but was not reflected in the table. Mr. Smith to revise table with approval date.
- ECC Barber Rig 1 was currently drilling at J2P-41; drilling at J2P-43 was next. Barber Rig 3
 was installing the well at J2P-19 and would move on to drill J2P-46. AMEC Barber Rig 4 was
 drilling at D1P-24 and would be moving on to NWP-18 if this location was prepared by the
 time the rig was finished at D1P-24.

J-2 Range Groundwater Investigation

Dave Hill (IAGWSP) provided an update on the J-2 Range investigation.

- Data for J2P-42 (west well on Gibbs Rd swath) were received last evening and a screen selection call may be conducted this afternoon. Further notice will be provided.
- IAGWSP is waiting for approval on the eastern well swath and off-site locations.
- Profiling of Co-op sentry wells C4 and C7 will be completed this week.
- No well number has been assigned to the H location located at Greenway and Jefferson Roads. Mr. Hill to check on status.

- 3 Peter's Pond Road has had three rounds of sampling. Jane Dolan (EPA) requested and the IAGWSP agreed to conduct monthly sampling of all Peters Pond Road residential wells for three months, at which time the need for additional sampling would be reassessed.
- Ms. Dolan requested a schedule for the J-2 Range Groundwater RRA Workplan. Dave Hill (IAGWSP) replied that by the next Tech meeting, the IAGWSP will identify a date for a schedule to be provided for an RRA Plan for the J-2 Range north plume.
- Ms. Dolan also requested that the description of the J-2 groundwater plume and J-2 RRA be revised/updated in the Monthly Progress Report. Mr. Hill to address.

Northwest Corner Update

Bill Gallagher (IAGWSP) provided an update on the Northwest Corner investigation.

- MW-338 wells were completed. The MW-333 drilling casing will be removed once the cable tool rig is available.
- Wells 95-13 and CMW-1 were sampled on 7/9.
- Len Pinaud (MADEP) agreed to call Schooner Pass Condo Assoc. to arrange sampling of 4036011 for 8/19.
- Locations for NWP-20 were reviewed during a 7/13 site walk with the agencies; final location will be selected pending receipt of sampling results from 95-13 and CMW-1 and latest synoptic water level data analysis.
- Additional sampling locations were selected at GP-12, GP-14 and GP-16 as shown in figures
 that were distributed at the meeting. Karen Wilson (IAGWSP) was reviewing the locations to
 determine if the ROA currently in SHPO/NH review would be required to approve sampling of
 these additional locations. Locations were not selected at L-3 Range to avoid impacting UXO
 clearance for NWP-18 access road. These locations could be staked on Friday without
 impacting work, as the UXO crews would be off.
- USGS postponed their CFC-age dating sampling until next week. USGS was assessing
 what additional data needed to be collected to provide accurate precision to date the younger
 water (<10 years).
- Property owners have signed ROEs provided by the Army Corps. ROE for camera survey
 has not been a priority, but will be initiated following resolution of general ROE issues.
- Residential well sample results for July were received and distributed in the recent detects table.
- Ralph Marks (Bourne Water District) indicated Schooner Pass Condominiums was nearing completion of the hook-up for town water.
- AEC and CHPMM have been evaluating the CAL PUFF model in comparison to the ISCST3 Model for use in evaluating the dispersal of perchlorate/debris during local fireworks display events. The data requirements are more extensive for the CAL PUFF model and therefore, using this model will be more expensive. It will also need to be modified for use in evaluating dispersion over a shorter distance. On the other hand, CHPMM is very familiar with the ISCST3 model, having used it to model other air dispersal events at MMR. This model has been evaluated as sufficient for the intended application, particularly because the input data available to the IAGWSP may not be precise, which will limit the data that can be input into the model. Desiree Moyer (EPA) requested more specifics on what the input data requirements would be for the CAL PUFF versus ISCST3. Hap Gonser (IAGWSP) suggested that a proposal be prepared for EPA's review explaining the specifics of the ISCST3 model.

Document and Schedules

Ed Wise (ACE) handed out the summary of scheduling issues.

 Scott Michalak (ACE) indicated that DEP comments were needed on the Demo 1 Soil and GW RRA Plan MORs, as soon as possible.

- Len Pinaud (MADEP) indicated that DEP could resolve the J-3 Range SMP comments today, so that the plan can be finalized and excavation can start next week. On the other hand, the HUTA 1 SMP comments are more substantial and DEP would like to see the responses to EPA comments before adding their comments. Regarding the Demo 2 and J-3 Range Soil RRA, language surrounding substantive requirements needs to be revised. Hap Gonser (IAGWSP) suggested that John McDonagh (IAGWSP) sit down with DEP to work on language.
- Demo 2 SMP and HUTA1 RRA Plan RCL to be submitted to the agencies shortly.
- Bill Gallagher (IAGWSP) inquired about the BIP Addendum Field Sampling and Excavation Plan MOR submitted last Thursday. Approval is needed shortly so that excavated soil can be treated in Thermal Treatment Unit. Also, the IAGWSP is hoping for comments on the Former A Range RRA RCL, although it is unlikely that the process will be resolved in time to treat soil in the Thermal Treatment Unit.
- Jane Dolan (EPA) noted that EPA had provided an unofficial (email) reply to the IAGWSP extension request for the L Range Soil Characterization Report requesting more information. However, the information had not been provided.
- To Ms. Dolan's inquiry, Dave Hill (IAGWSP) indicated the J-2 Range Soil Characterization Report extension request was made to allow for the incorporation of RRA data, additional sampling data, and the risk assessment process into the report.

MEC Characterization

Ben Gregson provided a summary of activities being conducted for the MEC Characterization.

- Camp Edwards was split into 4 Groundwater Study Regions. Evaluation was nearing completion on GW Region 1. GW Region 3 is also being investigated. The evaluation process had included evaluating detailed aerial photos, recognizing features and identifying locations. Areas were screened using monitor well data, soil data, geophysical data, MSP process data, site access, risks to wells, and particle track information from wells.
- An internal meeting to discuss findings for GW Region 1 is being convened next Wednesday, 7/21 and then the IAGWSP would like to have a meeting with agencies. Ultimately, sites will need to be selected for reconnaissance.

Miscellaneous Topics

- Hap Gonser (IAGWSP) proposed that the IAGWSP look into the feasibility of renaming the monitoring wells to reflect the operable unit being monitored.
- Desiree Moyer (EPA) requested a list of Army Corps team members and responsibilities.
- Desiree Moyer (EPA) commented on the Corrective Action Report for the HUTA screening area. Oversized stones that were to be replaced in the excavation need to be evaluated for contaminants. Entire screening area needed to be scraped, not just specific areas.

3. SUMMARY OF DATA RECEIVED

Table 3 summarizes validated detections of contaminants that exceeded an EPA Maximum Contaminant Level (MCL) of Health Advisory (HA) for drinking water, or exceeded a 4 ppb concentration for perchlorate received for the reporting period of June 25, 2004 through July 16, 2004. The reporting date is extended into June because this was the date for the close of data reported in the June Monthly Progress Report.

Table 4 summarizes first time-validated detections below the MCL/HA for drinking water or below a 4 ppb concentration for perchlorate received from June 25, 2004 through July 16, 2004. Metals, chloroform, and BEHP are excluded from Table 4 for the following reasons: metals are a natural component of groundwater, particularly at levels below MCLs or HAs; detections of chloroform are pervasive throughout Cape Cod and are not likely the result of military training

activities; and BEHP is believed to be largely an artifact of the investigation methods and introduced to the samples during collection or analysis.

First time validated detections of explosives, metals, VOCs, SVOCs, pesticides, herbicides, and perchlorate in groundwater compared to the MCL/HAs are summarized below:

Explosives in Groundwater Compared to MCL/HAs

For validated data received from June 25, 2004 through July 16, 2004, three wells MW-43M2 (Impact Area), MW-210M2 (Demo Area 1), MW-247M2 (J-3 Range) had first time validated detections of RDX above the HA of 2 ppb. Four wells, MW-218M1 (J-3 Range), MW-270S (Northwest Corner), MW-321M2 (J-2 Range) and MW-325M1 (L Range) had first time validated detections of RDX below the HA of 2 ppb. One well, MW-321M2 (J-2 Range) had a first time-validated detection of HMX below the MCL of 400 ppb.

Metals in Groundwater Compared to MCL/HAs

For validated data received from June 25, 2004 through July 16, 2004, no wells had first time-validated detections of metals above the MCL/HAs.

VOCs in Groundwater Compared to MCL/HAs

For validated data received from June 25, 2004 through July 16, 2004, no wells had first time-validated detections of SVOCs above or below the MCL/HAs.

SVOCs in Groundwater Compared to MCL/HAs

For validated data received from June 25, 2004 through July 16, 2004, no wells had first time-validated detections of SVOCs above or below the MCL/HAs.

Pesticides/Herbicides in Groundwater Compared to the MCL/HAs

For validated data received from June 25, 2004 through July 16, 2004, no wells had first time-validated detections of pesticides/herbicides above or below the MCL/HAs.

Perchlorate in Groundwater Compared to MCL/HAs

For validated data received from June 25, 2004 through July 16, 2004, two wells, MW-143M1 & M3 (J-3 Range), had first time validated detections of perchlorate above the concentration of 4 ppb. Three wells, MW-319M1, MW-321M1 and MW-324M1 (J-2 Range) had first time validated detections of perchlorate below the concentration of 4 ppb.

Rush data are summarized in Table 5. These data are for analyses that are performed on a fast turn around time, typically 1-5 days. Perchlorate and explosive analyses for monitoring wells, and perchlorate, explosive and volatile organic compound (VOC) analyses for groundwater profile samples, are conducted in this timeframe, as well as any analyses pursuant to a special request. The rush data are not validated, but are provided as an indication of the most recent preliminary results. Table 5 summarizes only detects, and does not show samples with non-detects.

The status of the explosive detections with respect to confirmation using Photo Diode Array (PDA) spectra is indicated in Table 5. PDA is a procedure that has been implemented for the

explosive analysis, to reduce the likelihood of false positive identifications. Where the PDA status is "YES" in Table 5, the detected compound is verified as properly identified. Where the status is "NO", the identification of an explosive has been determined to be a false positive. Where the status is blank, PDA has not yet been used to evaluate the detection, or PDA is not applicable because the analyte is a VOC or perchlorate. Most explosive detections verified by PDA are confirmed to be present upon completion of validation.

Table 5 includes detections from the following areas:

Western Boundary

• Groundwater samples from 02-05M1, M2, and M3 had detections of perchlorate. The results were similar to previous sampling rounds.

Demo Area 2

- A groundwater sample from MW-311M1 had a detection of RDX that was confirmed by PDA spectra. The result was similar to the previous sampling round.
- A groundwater samples from MW-312M1 had a detection of RDX that was confirmed by PDA spectra. The result was consistent with the profile results.

Northwest Corner

- A groundwater sample from well 95-13 had a detection of perchlorate. This is the first sampling event at this well.
- Groundwater samples from MW-287M1 & S, MW-297M1 & S, MW-320M1 & S, RSNW01, RSNW03, and RSNW06 had detections of perchlorate. The results were similar to previous sampling rounds.
- A groundwater sample from RSNW06 had a detection of RDX that was confirmed by PDA spectra. The results were similar to previous sampling rounds.

J-2 Range

Profile samples from MW-340 (J2P-42) had detections of explosives. 2,6-DNT was confirmed by PDA spectra, but with interference, in one interval at 55 ft bwt, 2A-DNT was confirmed by PDA spectra, but with interference, in one interval at 75 ft bwt, and 2,4-DANT was confirmed by PDA spectra, but with interference, in one interval at 135 ft bwt. Well screens were set at the depth (70 to 80 ft bwt) of the 2A-DNT detection, at the depth (110 to 120 ft bwt) corresponding to the mid-depth perchlorate detections at MW-327, and at the depth (185 to 198 ft bwt) corresponding to the deep perchlorate detections at MW-327.

4. DELIVERABLES SUBMITTED

Draft Health and Environmental Risk Assessment Work Plan (HERA)	07/06/2004
Monthly Progress Report # 87 for June 2004	07/10/2004
LTGM Supplement for August 2004 Event	07/13/2004

5. SCHEDULED ACTIONS

Scheduled actions through the end of July include complete well installation at MW-339 (J2P-19), MW-341 (D1P-24); and complete drilling at MW-342 (J2P-41). Groundwater sampling of Bourne water supply and monitoring wells, residential wells, and recently installed wells will continue. Groundwater sampling as part of the April round of the Draft 2004 Long Term Groundwater Monitoring Plan will be completed and the August round of the Draft 2004 Long Term Groundwater Monitoring Plan will commence.

SAMPLE_ID	GIS_LOCID	LOGDATE	SAMP_TYPE	SBD	SED	BWTS	BWTE
4036000-01G-A	4036000-01G	07/12/2004	GROUNDWATER	38	69.8	6	12
4036000-01G-A	4036000-01G	07/06/2004	GROUNDWATER	38	69.8	6	12
4036000-04G-A	4036000-04G	07/06/2004	GROUNDWATER	54.6	64.6	6	12
4036000-04G-A	4036000-04G	07/12/2004	GROUNDWATER	54.6	64.6	6	12
4036000-06G-A	4036000-06G	07/06/2004	GROUNDWATER	108	128	6	12
4036000-06G-A	4036000-06G	07/12/2004	GROUNDWATER	108	128	6	12
95-13-A	95-13	07/09/2004	GROUNDWATER	104.5	104.5	52.81	52.81
95-6A-A	95-13	07/14/2004	GROUNDWATER	167.5	177.5	142.5	152.5
95-6B-A	95-6B	07/14/2004	GROUNDWATER	119	129	94	104
97-2C-A	97-2C	07/16/2004	GROUNDWATER	132	132	68	68
97-2D-A	97-2D	07/16/2004	GROUNDWATER	115.4	115.4	82.9	82.9
97-2F-A	97-2F	07/16/2004	GROUNDWATER	120	120	76.7	76.7
CMW-1-A	CMW-1	07/09/2004	GROUNDWATER	190	190	65.65	65.65
CMW-1-D	CMW-1	07/09/2004	GROUNDWATER	190	190	65.65	65.65
MW-293M1-	MW-293	07/01/2004	GROUNDWATER	296.26	306.27	190.06	200.07
MW-293M2-	MW-293	07/15/2004	GROUNDWATER	196.42	206.42	90.22	100.22
MW-293S-	MW-293	07/01/2004	GROUNDWATER	110.1	120.12	3.9	13.92
MW-296M1-	MW-296	07/15/2004	GROUNDWATER	255	265	135.05	145.05
MW-296M2-	MW-296	07/15/2004	GROUNDWATER	215	225	95.05	105.05
MW-302M2-	MW-302	07/12/2004	GROUNDWATER	194.35	204.43	85.35	95.43
MW-329M2-	MW-329	07/13/2004	GROUNDWATER	150.05	160.05	124.75	134.75
MW-334M1-	MW-334	07/12/2004	GROUNDWATER	285	295	175	185
MW-334M2-	MW-334	07/12/2004	GROUNDWATER	165	175	55	65
PPPLODGE-A	PPPLODGE	07/08/2004	GROUNDWATER	13	13	6.5	6.5
PPPTENNIS-A	PPPTENNIS	07/08/2004	GROUNDWATER	31	31	13.54	13.54
RS0005R-A	RS0005R	07/01/2004	GROUNDWATER	0	0		
RS003P-A	RS003P	07/08/2004	GROUNDWATER	90	90		
RSNW01-A	RSNW01	07/07/2004	GROUNDWATER	0	0		
RSNW03-A	RSNW03	07/07/2004	GROUNDWATER	0	0		
RSNW06-A	RSNW06	07/07/2004	GROUNDWATER	0	0		
USCGANTST-A	USCGANTST	07/13/2004	GROUNDWATER	0	0		
W02-03M1A	02-03	07/16/2004	GROUNDWATER	130	140	86.1	96.1
W02-03M2A	02-03	07/16/2004	GROUNDWATER	92	102	48.15	58.15
W02-12M1A	02-12	07/16/2004	GROUNDWATER	109	119	58.35	68.35
W02-12M2A	02-12	07/16/2004	GROUNDWATER	94	104	43.21	53.21
W02-12M3A	02-12	07/16/2004	GROUNDWATER	79	89	28.22	38.22
W02-13M1A	02-13	07/13/2004	GROUNDWATER	98	108	58.33	68.33
W02-13M2A	02-13	07/13/2004	GROUNDWATER	83	93	44.2	54.2
W02-13M2D	02-13	07/13/2004	GROUNDWATER	83	93	44.2	54.2
W02-13M3A	02-13	07/13/2004	GROUNDWATER	68	78	28.3	38.3
W100M1A	MW-100	07/15/2004	GROUNDWATER	179	189	45	55

Profiling methods may include: Volatiles, Explosives, and Perchlorate Groundwater methods include: Volatiles, Semivolatiles, Explosives, Pesticides, Herbicides, Metals, Perchlorate and Wet Chemistry

Other Sample Types methods are variable

SBD = Sample Begin Depth, measured in feet bgs

SED = Sample End Depth, measured in feet bgs

BWTS = Depth below water table, start depth, measured in feet

SAMPLE_ID	GIS_LOCID	LOGDATE	SAMP_TYPE	SBD	SED	BWTS	BWTE
W100M2A	MW-100	07/15/2004	GROUNDWATER	164	174	30	40
W102M1A	MW-102	07/01/2004	GROUNDWATER	267	277	123	133
W102M2A	MW-102	07/01/2004	GROUNDWATER	237	247	93	103
W105M2A	MW-105	07/15/2004	GROUNDWATER	165	175	38	48
W106M1A	MW-106	07/15/2004	GROUNDWATER	170.5	180.5	38	48
W110M1A	MW-110	07/08/2004	GROUNDWATER	315.5	325.5	142	152
W110M2A	MW-110	07/08/2004	GROUNDWATER	248.5	258.5	75	85
W111M2A	MW-111	07/15/2004	GROUNDWATER	182	192	50	60
W112M1A	MW-112	07/15/2004	GROUNDWATER	195	205	56	66
W112M2A	MW-112	07/15/2004	GROUNDWATER	165	175	26	36
W112M2D	MW-112	07/15/2004	GROUNDWATER	165	175	26	36
W123M1A	MW-123	07/09/2004	GROUNDWATER	291	301	153	163
W123M2A	MW-123	07/09/2004	GROUNDWATER	236	246	98	108
W124M2A	MW-124	07/15/2004	GROUNDWATER	219	229	83	93
W125M1A	MW-125	07/02/2004	GROUNDWATER	232	242	182	192
W125SSA	MW-125	07/02/2004	GROUNDWATER	50	60	0	10
W126M1A	MW-126	07/01/2004	GROUNDWATER	118	128	19	29
W136M1A	MW-136	07/01/2004	GROUNDWATER	124	134	17	27
W136SSA	MW-136	07/01/2004	GROUNDWATER	107	117	0	10
W138M2A	MW-138	07/15/2004	GROUNDWATER	151	161	30	40
W144SSA	MW-144	07/08/2004	GROUNDWATER	26	36	5	15
W149M1A	MW-149	07/12/2004	GROUNDWATER	237.5	247.5	136	146
W158M1A	MW-158	07/06/2004	GROUNDWATER	176.5	186.5	89	99
W158M2A	MW-158	07/06/2004	GROUNDWATER	124.5	134.5	37	47
W158SSA	MW-158	07/06/2004	GROUNDWATER	89	99	2	12
W159M1A	MW-159	07/12/2004	GROUNDWATER	178.5	188.5	53	63
W168M2A	MW-168	07/01/2004	GROUNDWATER	198	208	116	126
W168M3A	MW-168	07/01/2004	GROUNDWATER	103	113	21	31
W168M3D	MW-168	07/01/2004	GROUNDWATER	103	113	21	31
W176M1A	MW-176	07/12/2004	GROUNDWATER	270	280	158.55	168.55
W176M2A	MW-176	07/12/2004	GROUNDWATER	229	239	117.6	127.6
W177M2A	MW-177	07/14/2004	GROUNDWATER	278	288	87.3	97.3
W177M2D	MW-177	07/14/2004	GROUNDWATER	278	288	87.3	97.3
W178M2A	MW-178	07/14/2004	GROUNDWATER	167	177	27	37
W182M2A	MW-182	07/12/2004	GROUNDWATER	273	283	102.89	112.89
W187DDA	MW-187	07/13/2004	GROUNDWATER	306	316	199.5	209.5
W194M1A	MW-194	07/13/2004	GROUNDWATER	85	90	39.1	44.1
W200M1A	MW-200	07/14/2004	GROUNDWATER	294	304	89.8	99.8
W202M1A	MW-202	07/15/2004	GROUNDWATER	264	274	117.7	127.7
W212M1A	MW-212	07/14/2004	GROUNDWATER	333	343	125.6	135.6
W215M1A	MW-215	07/06/2004	GROUNDWATER	240	250	133.85	143.85

Profiling methods may include: Volatiles, Explosives, and Perchlorate Groundwater methods include: Volatiles, Semivolatiles, Explosives, Pesticides, Herbicides, Metals, Perchlorate and Wet Chemistry

Other Sample Types methods are variable

SBD = Sample Begin Depth, measured in feet bgs

SED = Sample End Depth, measured in feet bgs

BWTS = Depth below water table, start depth, measured in feet

SAMPLE_ID	GIS_LOCID	LOGDATE	SAMP_TYPE	SBD	SED	BWTS	BWTE
W215M2A	MW-215	07/06/2004	GROUNDWATER	205	215	98.9	108.9
W215M2D	MW-215	07/06/2004	GROUNDWATER	205	215	98.9	108.9
W219M1A	MW-219	07/13/2004	GROUNDWATER	357	367	178	188
W219M2A	MW-219	07/14/2004	GROUNDWATER	332	342	153.05	163.05
W219M3A	MW-219	07/13/2004	GROUNDWATER	315	325	135.8	145.8
W219M4A	MW-219	07/14/2004	GROUNDWATER	225	235	45.7	55.7
W225M2A	MW-225	07/02/2004	GROUNDWATER	145	155	46.48	56.48
W225M3A	MW-225	07/02/2004	GROUNDWATER	125	135	26.48	36.48
W228M2A	MW-228	07/06/2004	GROUNDWATER	126	136	20	30
W228SSA	MW-228	07/06/2004	GROUNDWATER	104	114	10	20
W228SSD	MW-228	07/06/2004	GROUNDWATER	104	114	10	20
W232M1A	MW-232	07/02/2004	GROUNDWATER	77.5	82.5	34.94	39.94
W232M2A	MW-232	07/13/2004	GROUNDWATER	61	66	18.41	23.41
W237M1A	MW-237	07/02/2004	GROUNDWATER	80	90	28.5	38.5
W237SSA	MW-237	07/02/2004	GROUNDWATER	49	59	0	10
W237SSD	MW-237	07/02/2004	GROUNDWATER	49	59	0	10
W239M1A	MW-239	07/12/2004	GROUNDWATER	180	190	159.8	169.8
W239M2A	MW-239	07/12/2004	GROUNDWATER	150	160	129.85	139.85
W239M3A	MW-239	07/12/2004	GROUNDWATER	60	70	39.85	49.85
W23DDA	MW-23	07/09/2004	GROUNDWATER	272	282	149	159
W23M1A	MW-23	07/09/2004	GROUNDWATER	225	235	103	113
W23M2A	MW-23	07/09/2004	GROUNDWATER	189	194	67	72
W243M1A	MW-243	07/02/2004	GROUNDWATER	114.5	124.5	48.85	58.85
W243M2A	MW-243	07/02/2004	GROUNDWATER	84.5	94.5	15.82	25.82
W243M3A	MW-243	07/02/2004	GROUNDWATER	69.5	79.5	0.81	10.81
W246M1A	MW-246	07/13/2004	GROUNDWATER	178	188	116.2	126.2
W254M2A	MW-254	07/01/2004	GROUNDWATER	190	200	125.73	135.73
W266M2A	MW-266	07/08/2004	GROUNDWATER	239	249	92.26	102.26
W266M2D	MW-266	07/08/2004	GROUNDWATER	239	249	92.26	102.26
W277M1A	MW-277	07/07/2004	GROUNDWATER	130	140	26.3	36.3
W277SSA	MW-277	07/07/2004	GROUNDWATER	102	112	0	10
W278M1A	MW-278	07/07/2004	GROUNDWATER	113	123	25.76	35.76
W278M2A	MW-278	07/07/2004	GROUNDWATER	97	102	9.79	14.79
W279M1A	MW-279	07/07/2004	GROUNDWATER	96	106	37.4	47.4
W279M2A	MW-279	07/07/2004	GROUNDWATER	83	88	26.8	31.8
W279M2D	MW-279	07/07/2004	GROUNDWATER	83	88	26.8	31.8
W279SSA	MW-279	07/07/2004	GROUNDWATER	66	76	10	20
W308M1A	MW-308	07/14/2004	GROUNDWATER	325	335	127.42	137.42
W308M2A	MW-308	07/14/2004	GROUNDWATER	255	265	57.38	67.38
W320M1A	MW-320	07/13/2004	GROUNDWATER	138	148	22.49	32.49
W320M1D	MW-320	07/13/2004	GROUNDWATER	138	148	22.49	32.49

Profiling methods may include: Volatiles, Explosives, and Perchlorate Groundwater methods include: Volatiles, Semivolatiles, Explosives, Pesticides, Herbicides, Metals, Perchlorate and Wet Chemistry

Other Sample Types methods are variable

SBD = Sample Begin Depth, measured in feet bgs

SED = Sample End Depth, measured in feet bgs

BWTS = Depth below water table, start depth, measured in feet

SAMPLE_ID	GIS_LOCID	LOGDATE	SAMP_TYPE	SBD	SED	BWTS	BWTE
W320SSA	MW-320	07/13/2004	GROUNDWATER	114	124	0	10
W37M2A	MW-37	07/15/2004	GROUNDWATER	145	155	26	36
W40M1A	MW-40	07/15/2004	GROUNDWATER	132.5	142.5	13	23
W50DDA	MW-50	07/12/2004	GROUNDWATER	237	247	119	129
W85SSA	MW-85	07/15/2004	GROUNDWATER	116	126	1	11
W85SSD	MW-85	07/15/2004	GROUNDWATER	116	126	1	11
W86M2A	MW-86	07/12/2004	GROUNDWATER	158	168	16	26
W86SSA	MW-86	07/12/2004	GROUNDWATER	143	153	1	11
W87M1A	MW-87	07/01/2004	GROUNDWATER	194	204	62	72
W87M2A	MW-87	07/01/2004	GROUNDWATER	169	179	37	47
W88M3A	MW-88	07/07/2004	GROUNDWATER	173	183	32	42
W90M1A	MW-90	07/15/2004	GROUNDWATER	145	155	27	37
W93M1A	MW-93	07/15/2004	GROUNDWATER	185	195	56	66
W93M1D	MW-93	07/15/2004	GROUNDWATER	185	195	56	66
XXM971-A	97-1	07/16/2004	GROUNDWATER	83	93	62	72
XXM973-A	97-3	07/16/2004	GROUNDWATER	75	85	36	46
DW070804-NV	GAC WATER	07/08/2004	IDW	0	0		
JEGACDLM01-	JEGACDLM01	07/01/2004	IDW	0	0		
G341DAA	MW-341	07/13/2004	PROFILE	160	160	0.5	0.5
G341DBA	MW-341	07/13/2004	PROFILE	170	170	10.5	10.5
G341DCA	MW-341	07/14/2004	PROFILE	180	180	20.5	20.5
G341DDA	MW-341	07/14/2004	PROFILE	190	190	30.5	30.5
G341DEA	MW-341	07/15/2004	PROFILE	200	200	40.5	40.5
G341DED	MW-341	07/15/2004	PROFILE	200	200	40.5	40.5
G341DFA	MW-341	07/15/2004	PROFILE	210	210	50.5	50.5
G341DGA	MW-341	07/15/2004	PROFILE	220	220	60.5	60.5
G341DHA	MW-341	07/16/2004	PROFILE	230	230	70.5	70.5
MW-340-21	MW-340	07/12/2004	PROFILE	340	340	195	195
MW-340-22	MW-340	07/12/2004	PROFILE	347	347	202	202
MW-342-01	MW-342	07/13/2004	PROFILE	90	90	8.5	8.5
MW-342-02	MW-342	07/13/2004	PROFILE	100	100	18.5	18.5
MW-342-03	MW-342	07/13/2004	PROFILE	110	110	28.5	28.5
MW-342-04	MW-342	07/13/2004	PROFILE	120	120	38.5	38.5
MW-342-05	MW-342	07/13/2004	PROFILE	130	130	48.5	48.5
MW-342-06	MW-342	07/13/2004	PROFILE	140	140	58.5	58.5
MW-342-07	MW-342	07/13/2004	PROFILE	150	150	68.5	68.5
MW-342-08	MW-342	07/13/2004	PROFILE	160	160	78.5	78.5
MW-342-09	MW-342	07/13/2004	PROFILE	170	170	88.5	88.5
MW-342-11	MW-342	07/14/2004	PROFILE	180	180	98.5	98.5
MW-342-13	MW-342	07/15/2004	PROFILE	190	190	108.5	108.5
MW-342-14	MW-342	07/15/2004	PROFILE	200	200	118.5	118.5

Profiling methods may include: Volatiles, Explosives, and Perchlorate Groundwater methods include: Volatiles, Semivolatiles, Explosives, Pesticides, Herbicides, Metals, Perchlorate and Wet Chemistry

Other Sample Types methods are variable

SBD = Sample Begin Depth, measured in feet bgs

SED = Sample End Depth, measured in feet bgs

BWTS = Depth below water table, start depth, measured in feet

SAMPLE_ID	GIS_LOCID	LOGDATE	SAMP_TYPE	SBD	SED	BWTS	BWTE
MW-342-15	MW-342	07/15/2004	PROFILE	210	210	128.5	128.5
MW-342-16	MW-342	07/15/2004	PROFILE	220	220	138.5	138.5
MW-342-17	MW-342	07/15/2004	PROFILE	230	230	148.5	148.5
MW-342-18	MW-342	07/15/2004	PROFILE	240	240	158.5	158.5
MW-342-19	MW-342	07/15/2004	PROFILE	250	250	168.5	168.5
LKSNK0005AAA	LKSNK0005	07/12/2004	SURFACE WATER	0	0		
LKSNK0006AAA	LKSNK0006	07/12/2004	SURFACE WATER	0	0		
LKSNK0007AAA	LKSNK0007	07/12/2004	SURFACE WATER	0	0		

Profiling methods may include: Volatiles, Explosives, and Perchlorate Groundwater methods include: Volatiles, Semivolatiles, Explosives, Pesticides, Herbicides, Metals, Perchlorate and Wet Chemistry Other Sample Types methods are variable

SBD = Sample Begin Depth, measured in feet bgs

SED = Sample End Depth, measured in feet bgs

BWTS = Depth below water table, start depth, measured in feet

TABLE 3 VALIDATED DETECTS EXCEEDING MCLs OR HEALTH ADVISORY LIMITS INTERIM MONTHLY DATA RECEIVED 6/25/04-7/16/04

WELL/LOCID	SAMPLE_ID	SAMPLED	METHOD	ANALYTE	CONC.	FLAG	UNITS	BWTS	BWTE	DW_LIMIT >DW_LIMIT
58MW0009E	58MW0009E-A	05/05/2004	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRI	8.1		UG/L	6.5	11.5	2 X
58MW0016	58MW0016C-A	04/30/2004	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRI	4		UG/L	0	10	2 X
MW-107	W107M2A	04/26/2004	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRI	2.4		UG/L	5	15	2 X
MW-113	W113M2A	04/27/2004	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRI	8.5		UG/L	48	58	2 X
MW-178	W178M1A	05/19/2004	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRI	3.6		UG/L	117	127	2 X
MW-178	W178M1D	05/19/2004	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRI	3.5		UG/L	117	127	2 X
MW-2	W02M2A	04/26/2004	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRI	4.7		UG/L	33	38	2 X
MW-204	W204M1A	04/27/2004	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRI	7.7		UG/L	81	91	2 X
MW-210	W210M2D	05/20/2004	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRI	4.1		UG/L	54.69	64.69	2 X
MW-210	W210M2A	05/20/2004	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRI	3.9		UG/L	54.69	64.69	2 X
MW-218	W218M2A	05/06/2004	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRI	2.5		UG/L	93	98	2 X
MW-235	W235M1A	04/23/2004	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRI	27		UG/L	25.3	35.3	2 X
MW-247	W247M2A	04/22/2004	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRI	2.2		UG/L	102.78	112.78	2 X
MW-43	W43M2A	04/27/2004	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRI	2		UG/L	67	77	2 X
MW-76	W76SSA	04/21/2004	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRI	14		UG/L	18	28	2 X
MW-76	W76M2A	04/22/2004	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRI	160		UG/L	38	48	2 X
MW-76	W76M1A	04/21/2004	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRI	38		UG/L	58	68	2 X
MW-88	W88M2D	04/27/2004	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRI	3.7		UG/L	72	82	2 X
MW-88	W88M2A	04/27/2004	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRI	3.7		UG/L	72	82	2 X
MW-89	W89M2A	04/27/2004	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRI	6.9		UG/L	72	82	2 X
MW-91	W91SSA	05/05/2004	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRI	10		UG/L	0	10	2 X
MW-93	W93M2A	04/30/2004	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRI	2.4		UG/L	16	26	2 X
MW-95	W95M1A	04/30/2004	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRI	5.5		UG/L	78	88	2 X
MW-114	W114M2A	02/09/2004	E314.0	PERCHLORATE	42.3		UG/L	39	49	4 X
MW-114	W114M1A	02/09/2004	E314.0	PERCHLORATE	13.4		UG/L	96	106	4 X
MW-129	W129M2A	02/10/2004	E314.0	PERCHLORATE	5.13		UG/L	46	56	4 X
MW-129	W129M2A	04/07/2004	E314.0	PERCHLORATE	5.27		UG/L	46	56	4 X
MW-129	W129M1A	02/10/2004	E314.0	PERCHLORATE	6.62		UG/L	66	76	4 X
MW-129	W129M1A	04/07/2004	E314.0	PERCHLORATE	6.54		UG/L	66	76	4 X
MW-132	W132SSA	05/18/2004	E314.0	PERCHLORATE	13		UG/L	0	10	4 X
MW-143	W143M3A	05/07/2004	E314.0	PERCHLORATE	12	J	UG/L	77	82	4 X
MW-143	W143M3D	05/07/2004	E314.0	PERCHLORATE	12	J	UG/L	77	82	4 X
MW-143	W143M2A	05/07/2004	E314.0	PERCHLORATE	5.7	J	UG/L	87	92	4 X

BWTS = DEPTH BELOW WATER TABLE, START DEPTH, MEASURED IN FEET

BWTE = DEPTH BELOW WATER TABLE, END DEPTH, MEASURED IN FEET

DW LIMIT = EITHER THE MCL OR LOWEST HEALTH ADVISORY CONCENTRATION (CHILD, ADULT OR LIFETIME)

>DW LIMIT = EQUALS OR EXCEEDS EITHER THE MCL OR LOWEST HEALTH ADVISORY CONCENTRATION (CHILD, ADULT, OR LIFETIME)

J = ESTIMATED DETECT

TABLE 3 VALIDATED DETECTS EXCEEDING MCLs OR HEALTH ADVISORY LIMITS INTERIM MONTHLY DATA RECEIVED 6/25/04-7/16/04

WELL/LOCID	SAMPLE_ID	SAMPLED	METHOD	ANALYTE	CONC.	FLAG	UNITS	BWTS	BWTE	DW_LIMIT >DW_LIMIT
MW-143	W143M1A	05/07/2004	E314.0	PERCHLORATE	5	J	UG/L	114	124	4 X
MW-165	W165M2D	03/01/2004	E314.0	PERCHLORATE	50.9	J	UG/L	46	56	4 X
MW-165	W165M2A	03/01/2004	E314.0	PERCHLORATE	50.9	J	UG/L	46	56	4 X
MW-165	W165M2A	04/09/2004	E314.0	PERCHLORATE	39		UG/L	46	56	4 X
MW-172	W172M2D	02/10/2004	E314.0	PERCHLORATE	4.44		UG/L	104	114	4 X
MW-172	W172M2A	02/10/2004	E314.0	PERCHLORATE	4.45		UG/L	104	114	4 X
MW-247	W247M2A	04/22/2004	E314.0	PERCHLORATE	4.4		UG/L	102.78	112.78	4 X
MW-250	W250M2A	04/22/2004	E314.0	PERCHLORATE	6.3		UG/L	134.82	144.82	4 X
MW-31	W31SSA	02/28/2004	E314.0	PERCHLORATE	7.77	J	UG/L	13	18	4 X
MW-34	W34M2A	03/05/2004	E314.0	PERCHLORATE	7.02		UG/L	53	63	4 X
MW-76	W76SSA	02/24/2004	E314.0	PERCHLORATE	19.1		UG/L	18	28	4 X
MW-76	W76M2A	02/24/2004	E314.0	PERCHLORATE	115		UG/L	38	48	4 X
MW-76	W76M1A	02/24/2004	E314.0	PERCHLORATE	16.4		UG/L	58	68	4 X
MW-77	W77M2A	02/12/2004	E314.0	PERCHLORATE	5.32		UG/L	38	48	4 X
MW-78	W78M2D	02/24/2004	E314.0	PERCHLORATE	8.18	J	UG/L	38	48	4 X
MW-78	W78M2A	02/24/2004	E314.0	PERCHLORATE	8.34		UG/L	38	48	4 X
MW-78	W78M2A	04/06/2004	E314.0	PERCHLORATE	8.2		UG/L	38	48	4 X
MW-78	W78M1A	02/23/2004	E314.0	PERCHLORATE	4.83		UG/L	58	68	4 X
MW-78	W78M1A	04/06/2004	E314.0	PERCHLORATE	4.37		UG/L	58	68	4 X

TABLE 4 VALIDATED DETECTS BELOW MCLs OR HEALTH ADVISORY LIMITS NOT PREVIOUSLY DETECTED INTERIM MONTHLY DATA RECEIVED 6/25/04-7/16/04

WELL/LOCID	SAMPLE_ID	SAMPLED	METHOD	ANALYTE	CONC.	FLAG	UNITS	BWTS	BWTE	DW_LIMIT	DW_LIMIT
MW-321M2	MW-321M2-	06/14/2004	SW8330	OCTAHYDRO-1,3,5,7-TETRANITRO-1,3,	3.8		UG/L			400	
MW-321M2	MW-321M2-	06/14/2004	SW8330	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRI	1.2		UG/L			2	
MW-321M1	MW-321M1-	06/14/2004	E314.0	PERCHLORATE	3.5		UG/L			4	
MW-325M1	MW-325M1-	05/19/2004	SW8330	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRI	0.5		UG/L			2	
MW-324M1	MW-324M1-	05/27/2004	E314.0	PERCHLORATE	1.9		UG/L			4	
MW-319M1	MW-319M1-	05/24/2004	E314.0	PERCHLORATE	2.8		UG/L			4	
WL270S	W270SSA	04/29/2004	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRI	0.28		UG/L	0	10	2	
WL218M1	W218M1A	05/06/2004	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRI	0.37	J	UG/L	123	128	2	

SAMPLE ID	LOCID OR WELL	SAMPLED	SAMP TYPE	SBD	SED	BWTS	BWTE	METHOD	ANALYTE	PDA
95-13-A	95-13	07/09/2004	GROUNDWATER	104.5	104.5	52.81	52.81	E314.0	PERCHLORATE	
RSNW01-A	RSNW01	07/07/2004	GROUNDWATER	0	0			E314.0	PERCHLORATE	
RSNW03-A	RSNW03	07/07/2004	GROUNDWATER	0	0			E314.0	PERCHLORATE	
RSNW06-A	RSNW06	07/07/2004	GROUNDWATER	0	0			8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	YES
RSNW06-A	RSNW06	07/07/2004	GROUNDWATER	0	0			E314.0	PERCHLORATE	
W02-05M1A	02-05	06/28/2004	GROUNDWATER	110	120	81.44	91.44	E314.0	PERCHLORATE	
W02-05M1D	02-05	06/28/2004	GROUNDWATER	110	120	81.44	91.44	E314.0	PERCHLORATE	
W02-05M2A	02-05	06/28/2004	GROUNDWATER	92	102	63.41	73.41	E314.0	PERCHLORATE	
W02-05M3A	02-05	06/28/2004	GROUNDWATER	70	80	41.37	51.37	E314.0	PERCHLORATE	
W287M1A	MW-287	06/22/2004	GROUNDWATER	160	170	25.45	35.45	E314.0	PERCHLORATE	
W287SSA	MW-287	06/22/2004	GROUNDWATER	133	143	0	10	E314.0	PERCHLORATE	
W297M1A	MW-297	06/22/2004	GROUNDWATER	92	102	20.28	30.28	E314.0	PERCHLORATE	
W297SSA	MW-297	06/22/2004	GROUNDWATER	72	82	0.32	10.32	E314.0	PERCHLORATE	
W311M1A	MW-311	06/30/2004	GROUNDWATER	222	232	24.89	34.89	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	YES
W312M1A	MW-312	06/30/2004	GROUNDWATER	177	187	24.41	34.41	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	YES
W320M1A	MW-320	07/13/2004	GROUNDWATER	138	148	22.49	32.49	E314.0	PERCHLORATE	
W320M1D	MW-320	07/13/2004	GROUNDWATER	138	148	22.49	32.49	E314.0	PERCHLORATE	
W320SSA	MW-320	07/13/2004	GROUNDWATER	114	124	0	10	E314.0	PERCHLORATE	
MW-340-01	MW-340	07/07/2004	PROFILE	150	150	5	5	8330N	NITROGLYCERIN	NO
MW-340-01	MW-340	07/07/2004	PROFILE	150	150	5	5	8330N	3-NITROTOLUENE	NO
MW-340-01	MW-340	07/07/2004	PROFILE	150	150	5	5	8330N	2-NITROTOLUENE	NO
MW-340-01	MW-340	07/07/2004	PROFILE	150	150	5	5	8330N	2-AMINO-4,6-DINITROTOLUENE	NO
MW-340-01	MW-340	07/07/2004	PROFILE	150	150	5	5	8330N	PENTAERYTHRITOL TETRANITRATE	NO
MW-340-01	MW-340	07/07/2004	PROFILE	150	150	5	5	8330N	NITROBENZENE	NO
MW-340-01	MW-340	07/07/2004	PROFILE	150	150	5	5	8330N	1,3,5-TRINITROBENZENE	NO+
MW-340-01	MW-340	07/07/2004	PROFILE	150	150	5	5	8330N	2,6-DINITROTOLUENE	NO
MW-340-01	MW-340	07/07/2004	PROFILE	150	150	5	5	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	NO
MW-340-01	MW-340	07/07/2004	PROFILE	150	150	5	5	8330N	1,3-DINITROBENZENE	NO

DATA REPORTED REFLECT CURRENT DATABASE FOR SAMPLES RECEIVED IN SPECIFIED TIMEFRAME. NOT ALL RESULTS ARE COMPLETE.

SBD = SAMPLE COLLECTION BEGIN DEPTH IN FEET BELOW GROUND SURFACE

SED = SAMPLE COLLECTION END DEPTH IN FEET BELOW GROUND SURFACE

BWTS = DEPTH BELOW WATER TABLE, START DEPTH, MEASURED IN FEET

BWTE = DEPTH BELOW WATER TABLE, END DEPTH, MEASURED IN FEET

PDA/YES = Photo Diode Array, Detect Confirmed

PDA/NO = Photo Diode Array, Detect Not Confirmed

SAMPLE ID	LOCID OR WELL	SAMPLED	SAMP TYPE	SBD	SED	BWTS	BWTE	METHOD	ANALYTE	PDA
MW-340-01	MW-340	07/07/2004	PROFILE	150	150	5	5	8330N	4-NITROTOLUENE	NO+
MW-340-01	MW-340	07/07/2004	PROFILE	150	150	5	5	8330N	PICRIC ACID	NO
MW-340-02	MW-340	07/07/2004	PROFILE	160	160	15	15	8330N	2-NITROTOLUENE	NO
MW-340-02	MW-340	07/07/2004	PROFILE	160	160	15	15	8330N	NITROGLYCERIN	NO
MW-340-02	MW-340	07/07/2004	PROFILE	160	160	15	15	8330N	2-AMINO-4,6-DINITROTOLUENE	NO
MW-340-02	MW-340	07/07/2004	PROFILE	160	160	15	15	8330N	2,6-DINITROTOLUENE	NO
MW-340-02	MW-340	07/07/2004	PROFILE	160	160	15	15	8330N	1,3-DINITROBENZENE	NO
MW-340-02	MW-340	07/07/2004	PROFILE	160	160	15	15	8330N	PICRIC ACID	NO
MW-340-02	MW-340	07/07/2004	PROFILE	160	160	15	15	8330N	1,3,5-TRINITROBENZENE	NO+
MW-340-03	MW-340	07/07/2004	PROFILE	170	170	25	25	8330N	2,6-DINITROTOLUENE	NO
MW-340-03	MW-340	07/07/2004	PROFILE	170	170	25	25	8330N	PICRIC ACID	NO
MW-340-03	MW-340	07/07/2004	PROFILE	170	170	25	25	8330N	1,3-DINITROBENZENE	NO
MW-340-03	MW-340	07/07/2004	PROFILE	170	170	25	25	8330N	2-AMINO-4,6-DINITROTOLUENE	NO
MW-340-03	MW-340	07/07/2004	PROFILE	170	170	25	25	8330N	2-NITROTOLUENE	NO
MW-340-03	MW-340	07/07/2004	PROFILE	170	170	25	25	8330N	NITROGLYCERIN	NO
MW-340-03	MW-340	07/07/2004	PROFILE	170	170	25	25	8330N	1,3,5-TRINITROBENZENE	NO+
MW-340-03FD	MW-340	07/07/2004	PROFILE	170	170	25	25	8330N	PICRIC ACID	NO
MW-340-03FD	MW-340	07/07/2004	PROFILE	170	170	25	25	8330N	2-NITROTOLUENE	NO
MW-340-03FD	MW-340	07/07/2004	PROFILE	170	170	25	25	8330N	1,3,5-TRINITROBENZENE	NO+
MW-340-03FD	MW-340	07/07/2004	PROFILE	170	170	25	25	8330N	2-AMINO-4,6-DINITROTOLUENE	NO
MW-340-03FD	MW-340	07/07/2004	PROFILE	170	170	25	25	8330N	NITROGLYCERIN	NO
MW-340-03FD	MW-340	07/07/2004	PROFILE	170	170	25	25	8330N	1,3-DINITROBENZENE	NO
MW-340-03FD	MW-340	07/07/2004	PROFILE	170	170	25	25	8330N	2,6-DINITROTOLUENE	NO
MW-340-04	MW-340	07/07/2004	PROFILE	180	180	35	35	8330N	2-AMINO-4,6-DINITROTOLUENE	NO
MW-340-04	MW-340	07/07/2004	PROFILE	180	180	35	35	8330N	1,3,5-TRINITROBENZENE	NO+
MW-340-04	MW-340	07/07/2004	PROFILE	180	180	35	35	8330N	2,4-DIAMINO-6-NITROTOLUENE	NO
MW-340-04	MW-340	07/07/2004	PROFILE	180	180	35	35	8330N	2,6-DINITROTOLUENE	NO+
MW-340-04	MW-340	07/07/2004	PROFILE	180	180	35	35	8330N	1,3-DINITROBENZENE	NO

DATA REPORTED REFLECT CURRENT DATABASE FOR SAMPLES RECEIVED IN SPECIFIED TIMEFRAME. NOT ALL RESULTS ARE COMPLETE.

SBD = SAMPLE COLLECTION BEGIN DEPTH IN FEET BELOW GROUND SURFACE

SED = SAMPLE COLLECTION END DEPTH IN FEET BELOW GROUND SURFACE

BWTS = DEPTH BELOW WATER TABLE, START DEPTH, MEASURED IN FEET

BWTE = DEPTH BELOW WATER TABLE, END DEPTH, MEASURED IN FEET

PDA/YES = Photo Diode Array, Detect Confirmed

PDA/NO = Photo Diode Array, Detect Not Confirmed

SAMPLE ID	LOCID OR WELL	SAMPLED	SAMP TYPE	SBD	SED	BWTS	BWTE	METHOD	ANALYTE	PDA
MW-340-04	MW-340	07/07/2004	PROFILE	180	180	35	35	8330N	2-NITROTOLUENE	NO
MW-340-04	MW-340	07/07/2004	PROFILE	180	180	35	35	8330N	PICRIC ACID	NO
MW-340-04	MW-340	07/07/2004	PROFILE	180	180	35	35	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	NO
MW-340-04	MW-340	07/07/2004	PROFILE	180	180	35	35	8330N	PENTAERYTHRITOL TETRANITRATE	NO
MW-340-04	MW-340	07/07/2004	PROFILE	180	180	35	35	8330N	NITROGLYCERIN	NO
MW-340-04	MW-340	07/07/2004	PROFILE	180	180	35	35	8330N	NITROBENZENE	NO
MW-340-05	MW-340	07/07/2004	PROFILE	190	190	45	45	8330N	1,3-DINITROBENZENE	NO
MW-340-05	MW-340	07/07/2004	PROFILE	190	190	45	45	8330N	NITROGLYCERIN	NO
MW-340-05	MW-340	07/07/2004	PROFILE	190	190	45	45	8330N	2,6-DINITROTOLUENE	NO+
MW-340-05	MW-340	07/07/2004	PROFILE	190	190	45	45	8330N	NITROBENZENE	NO
MW-340-05	MW-340	07/07/2004	PROFILE	190	190	45	45	8330N	2-AMINO-4,6-DINITROTOLUENE	NO
MW-340-05	MW-340	07/07/2004	PROFILE	190	190	45	45	8330N	1,3,5-TRINITROBENZENE	NO+
MW-340-05	MW-340	07/07/2004	PROFILE	190	190	45	45	8330N	2,4-DIAMINO-6-NITROTOLUENE	NO
MW-340-05	MW-340	07/07/2004	PROFILE	190	190	45	45	8330N	2-NITROTOLUENE	NO
MW-340-05	MW-340	07/07/2004	PROFILE	190	190	45	45	8330N	PENTAERYTHRITOL TETRANITRATE	NO
MW-340-05	MW-340	07/07/2004	PROFILE	190	190	45	45	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	NO
MW-340-05	MW-340	07/07/2004	PROFILE	190	190	45	45	8330N	3-NITROTOLUENE	NO
MW-340-05	MW-340	07/07/2004	PROFILE	190	190	45	45	8330N	PICRIC ACID	NO
MW-340-06	MW-340	07/07/2004	PROFILE	200	200	55	55	8330N	NITROGLYCERIN	NO
MW-340-06	MW-340	07/07/2004	PROFILE	200	200	55	55	8330N	PENTAERYTHRITOL TETRANITRATE	NO
MW-340-06	MW-340	07/07/2004	PROFILE	200	200	55	55	8330N	2,6-DINITROTOLUENE	YES+
MW-340-06	MW-340	07/07/2004	PROFILE	200	200	55	55	8330N	2-AMINO-4,6-DINITROTOLUENE	NO
MW-340-06	MW-340	07/07/2004	PROFILE	200	200	55	55	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	NO
MW-340-06	MW-340	07/07/2004	PROFILE	200	200	55	55	8330N	PICRIC ACID	NO
MW-340-07	MW-340	07/07/2004	PROFILE	210	210	65	65	8330N	PENTAERYTHRITOL TETRANITRATE	NO
MW-340-07	MW-340	07/07/2004	PROFILE	210	210	65	65	8330N	PICRIC ACID	NO
MW-340-07	MW-340	07/07/2004	PROFILE	210	210	65	65	8330N	2-AMINO-4,6-DINITROTOLUENE	NO
MW-340-07	MW-340	07/07/2004	PROFILE	210	210	65	65	8330N	NITROGLYCERIN	NO

DATA REPORTED REFLECT CURRENT DATABASE FOR SAMPLES RECEIVED IN SPECIFIED TIMEFRAME. NOT ALL RESULTS ARE COMPLETE.

SBD = SAMPLE COLLECTION BEGIN DEPTH IN FEET BELOW GROUND SURFACE

SED = SAMPLE COLLECTION END DEPTH IN FEET BELOW GROUND SURFACE

BWTS = DEPTH BELOW WATER TABLE, START DEPTH, MEASURED IN FEET

BWTE = DEPTH BELOW WATER TABLE, END DEPTH, MEASURED IN FEET

PDA/YES = Photo Diode Array, Detect Confirmed

PDA/NO = Photo Diode Array, Detect Not Confirmed

SAMPLE ID	LOCID OR WELL	SAMPLED	SAMP TYPE	SBD	SED	BWTS	BWTE	METHOD	ANALYTE	PDA
MW-340-09	MW-340	07/08/2004	PROFILE	220	220	75	75	8330N	NITROGLYCERIN	NO
MW-340-09	MW-340	07/08/2004	PROFILE	220	220	75	75	8330N	PICRIC ACID	NO
MW-340-09	MW-340	07/08/2004	PROFILE	220	220	75	75	8330N	2-AMINO-4,6-DINITROTOLUENE	YES+
MW-340-10	MW-340	07/08/2004	PROFILE	230	230	85	85	8330N	NITROGLYCERIN	NO
MW-340-11	MW-340	07/08/2004	PROFILE	240	240	95	95	8330N	NITROGLYCERIN	NO
MW-340-11	MW-340	07/08/2004	PROFILE	240	240	95	95	8330N	PICRIC ACID	NO
MW-340-12	MW-340	07/08/2004	PROFILE	250	250	105	105	8330N	NITROGLYCERIN	NO
MW-340-12	MW-340	07/08/2004	PROFILE	250	250	105	105	8330N	PICRIC ACID	NO
MW-340-13	MW-340	07/08/2004	PROFILE	260	260	115	115	8330N	PENTAERYTHRITOL TETRANITRATE	NO
MW-340-13	MW-340	07/08/2004	PROFILE	260	260	115	115	8330N	PICRIC ACID	NO
MW-340-13	MW-340	07/08/2004	PROFILE	260	260	115	115	8330N	2,6-DINITROTOLUENE	NO+
MW-340-13	MW-340	07/08/2004	PROFILE	260	260	115	115	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	NO
MW-340-13	MW-340	07/08/2004	PROFILE	260	260	115	115	8330N	NITROGLYCERIN	NO
MW-340-13FD	MW-340	07/08/2004	PROFILE	260	260	115	115	8330N	PICRIC ACID	NO
MW-340-13FD	MW-340	07/08/2004	PROFILE	260	260	115	115	8330N	NITROGLYCERIN	NO
MW-340-14	MW-340	07/08/2004	PROFILE	270	270	125	125	8330N	PICRIC ACID	NO
MW-340-14	MW-340	07/08/2004	PROFILE	270	270	125	125	8330N	NITROGLYCERIN	NO
MW-340-15	MW-340	07/08/2004	PROFILE	280	280	135	135	8330N	PICRIC ACID	NO
MW-340-15	MW-340	07/08/2004	PROFILE	280	280	135	135	8330N	NITROBENZENE	NO
MW-340-15	MW-340	07/08/2004	PROFILE	280	280	135	135	8330N	2,4-DIAMINO-6-NITROTOLUENE	YES+
MW-340-15	MW-340	07/08/2004	PROFILE	280	280	135	135	8330N	PENTAERYTHRITOL TETRANITRATE	NO
MW-340-15	MW-340	07/08/2004	PROFILE	280	280	135	135	8330N	NITROGLYCERIN	NO
MW-340-16	MW-340	07/08/2004	PROFILE	290	290	145	145	8330N	NITROGLYCERIN	NO
MW-340-16	MW-340	07/08/2004	PROFILE	290	290	145	145	8330N	PICRIC ACID	NO
MW-340-17	MW-340	07/09/2004	PROFILE	300	300	155	155	8330N	2-AMINO-4,6-DINITROTOLUENE	NO
MW-340-17	MW-340	07/09/2004	PROFILE	300	300	155	155	8330N	NITROGLYCERIN	NO
MW-340-17	MW-340	07/09/2004	PROFILE	300	300	155	155	8330N	PICRIC ACID	NO
MW-340-17	MW-340	07/09/2004	PROFILE	300	300	155	155	8330N	2,6-DINITROTOLUENE	NO

DATA REPORTED REFLECT CURRENT DATABASE FOR SAMPLES RECEIVED IN SPECIFIED TIMEFRAME. NOT ALL RESULTS ARE COMPLETE.

SBD = SAMPLE COLLECTION BEGIN DEPTH IN FEET BELOW GROUND SURFACE

SED = SAMPLE COLLECTION END DEPTH IN FEET BELOW GROUND SURFACE

BWTS = DEPTH BELOW WATER TABLE, START DEPTH, MEASURED IN FEET

BWTE = DEPTH BELOW WATER TABLE, END DEPTH, MEASURED IN FEET

PDA/YES = Photo Diode Array, Detect Confirmed

PDA/NO = Photo Diode Array, Detect Not Confirmed

SAMPLE ID	LOCID OR WELL	SAMPLED	SAMP TYPE	SBD	SED	BWTS	BWTE	METHOD	ANALYTE	PDA
MW-340-21	MW-340	07/12/2004	PROFILE	340	340	195	195	8330N	NITROGLYCERIN	NO
MW-340-21	MW-340	07/12/2004	PROFILE	340	340	195	195	8330N	2-AMINO-4,6-DINITROTOLUENE	NO+
MW-340-21	MW-340	07/12/2004	PROFILE	340	340	195	195	8330N	PICRIC ACID	NO
MW-340-22	MW-340	07/12/2004	PROFILE	347	347	202	202	8330N	PICRIC ACID	NO
MW-340-22	MW-340	07/12/2004	PROFILE	347	347	202	202	8330N	NITROGLYCERIN	NO

DATA REPORTED REFLECT CURRENT DATABASE FOR SAMPLES RECEIVED IN SPECIFIED TIMEFRAME. NOT ALL RESULTS ARE COMPLETE.

SBD = SAMPLE COLLECTION BEGIN DEPTH IN FEET BELOW GROUND SURFACE

SED = SAMPLE COLLECTION END DEPTH IN FEET BELOW GROUND SURFACE

BWTS = DEPTH BELOW WATER TABLE, START DEPTH, MEASURED IN FEET

BWTE = DEPTH BELOW WATER TABLE, END DEPTH, MEASURED IN FEET

PDA/YES = Photo Diode Array, Detect Confirmed

PDA/NO = Photo Diode Array, Detect Not Confirmed