WEEKLY PROGRESS UPDATE FOR OCTOBER 13 – OCTOBER 17, 2003

EPA REGION I ADMINISTRATIVE ORDERS SDWA 1-97-1019 and 1-2000-0014

MASSACHUSETTS MILITARY RESERVATION TRAINING RANGE AND IMPACT AREA

The following summary of progress is for the period from October 13 through October 17, 2003.

1. SUMMARY OF ACTIONS TAKEN

Drilling progress as of October 17 is summarized in Table 1.

	Table 1. Drilling progres	s as of Octo	ber 17, 2003	
Boring Number	Purpose of Boring/Well	Total Depth (ft bgs)	Saturated Depth (ft bwt)	Completed Well Screens (ft bgs)
MW-285	Western Boundary (CBP-7)	150		
MW-287	Northwest Corner (NWP-6)	281	146	133-143; 160-170
MW-288	L Range (LP-7)	290	202	190-200
MW-291	L Range (LP-11)	290	197	
bgs = below bwt = below	ground surface water table			

Completed well installation of MW-287 (NWP-6) and MW-288 (LP-7), completed drilling MW-291 (LP-11), and commenced drilling of MW-285 (CBP-7). Well development continued for recently installed wells.

Samples collected during the reporting period are summarized in Table 2. Groundwater profile samples were collected from MW-287 and MW-291. Groundwater samples were collected from Bourne water supply and monitoring wells, residential wells, and as part of the August round of the Draft 2003 Long-Term Groundwater Monitoring Plan. A pre-detonation and post-detonation soil sample was collected from Demo Area 1. Soil samples were collected from BIP craters and from grids in the J-3 Range. Investigation-derived waste (IDW) samples were collected from the Granular Activated Carbon (GAC) treatment system. Surface water samples were collected near a public beach, a private beach, and a spit at Snake Pond.

The following are the notes from the October 16, 2003 Technical Team meeting of the Impact Area Groundwater Study Program office at Camp Edwards:

Participants

Hap Gosner (IAGWSPO) Ben Gregson (IAGWSPO) Dave Hill (IAGWSPO) Tina Dolen (IAGWSPO) Bill Gallagher (IAGWSPO) Paul Nixon (IAGWSPO) Karen Wilson (IAGWSPO) LTC Bill Fitzpatrick (E&RC) Mark Begley (EMC) Todd Borci (EPA) Meghan Cassidy (EPA) Jane Dolan (EPA) Jim Murphy (EPA) Len Pinaud (MADEP) Mark Panni (MADEP) Dave Williams (MDPH) Frank Fekele (ACE) Ed Wise (ACE) Heather Sullivan (ACE) Dave Margolis (ACE) Kim Harriz (AMEC) John Rice (AMEC) Marc Grant (AMEC-phone) Dick Skryness (ECC-phone) Leo Yuskus (Haley & Ward) Mike Goydas (Jacobs) Kevin Hood (Univ. Conn)

Punchlist Items

- #1 Provide date for sampling J-1 Range private well (ACE). Homeowner has indicated they do not have a well, although town records indicate they do have a well. Dave Margolis (ACE) to check if residence has a billing record at the water department.
- #3 Provide update of access letter to Regional Technical School (IAGWSP). No response received.
- Provide update on request for installation of monitoring well on Schooner Pass
 Condominium Property (IAGWSPO). It was clarified that the letter sent by the Army/Guard requesting a meeting to discuss results and the installation of a monitoring well was sent to the Schooner Pass Condo Association, not to the property owner. Well 4036011 is located on private property not on property owned by the Condo Association. Len Pinaud (MADEP) has traded messages with the maintenance supervisor. Meghan Cassidy (EPA) to provide Mr. Pinaud with the number of the Condo Association president. Ms. Cassidy also requested the IAGWSPO follow up their letter with a phone call. Todd Borci (EPA) requested a letter be sent addressed to the property owner, specifically requesting access to the property to install a monitoring well.

Archive Search Report September Update

Ed Wise (ACE) provided an update on activities completed for the Archive Search Report in September, distributing a one-page summary.

- Tetra Tech continued to wrap up witness interview work. Interview summaries for witnesses 75 and 76 were submitted to the IAGWSP/Army Corps and distributed to the Tech meeting distribution list. Todd Borci requested a summary table be provided listing all interviews completed to date.
- A status summary of ASR-related efforts was submitted to IAGWSP/CENAE to support closeout of Tetra Tech's actions on the ASR project and the transition of any remaining work to other contractors, as necessary. Jane Dolan requested a closeout status summary for all Tetra Tech contracted work.
- No comments have been received from the agencies on the ASR Report and the ASR Data Archive Internet web-based access system that was submitted to the regulators in December 2002.
- As requested, agencies to be provided with a summary of any items added or modified to the ASR Report and/or the ASR Data Archive since the December 2002 timeframe, shortly.

ROA Status and Drilling Schedule

Heather Sullivan (ACE) reviewed the ROA status and drilling schedule, distributing a 2-page table.

- There was no new ROA information since distribution of the last status table.
- ROAs for all unshaded wells listed on the drilling schedule have been submitted to Karen Wilson (IAGWSPO) or SHPO, but have not received approval to date.
- Todd Borci and Meghan Cassidy (EPA) noted that several SE Ranges proposed well
 locations were not listed on the schedule and expressed frustration that although a sufficient
 backlog of drilling was available, the IAGWSPO/Army Corps had not mobilized nor have a
 specific schedule to mobilize a second drill rig. Jane Dolan (EPA) noted that in a September
 meeting, the IAGWSPO/Army Corps and agencies had discussed proposed wells that could
 be added to the schedule with the confirmation of locations based on the updated
 subregional model.
- Dave Margolis (ACE) indicated it was the IAGWSPO/Army Corps intent to go over the SE Ranges drilling schedule in the next two weeks and finalize locations based on the SE Ranges subregional model, which had just been updated to incorporate the latest synoptic

- survey. Based on the current schedule it was feasible for a second drilling rig to be mobilized in late November.
- In subsequent discussions on the J-2 Range investigation, Ms. Dolan requested the Army Corps respond by Wednesday, 10/22 regarding adding a second rig and Mr. Margolis committed to review and add additional wells to the drilling schedule next week (week of 10/20).
- Also later in the Tech meeting discussion, Ms. Dolan noted that the locations of several wells proposed in the SE Ranges Workplan were predicated on the results from drilling of J1P-21 and J1P-22, and requested these wells be resequenced (prioritized) in the drilling schedule.

Fieldwork Update

Frank Fedele (ACE) provided an update on the IAGWSP fieldwork.

- As part of AMEC's investigation, well installation was completed at MW-288, drilling was completed for MW-287 and EW-275. Setting up at CBP-7 today; J3P-32 is the next well location after MW-287 is completed.
- Soil sampling at the Northwest Corner grids was completed on 10/01.
- UXO clearance continued in the footprint of the Demo 1 Frank Perkins Treatment System and at the J3P-32 well pad. UXO clearance of J3P-33 will be conducted next week.
- Well development was completed for MW-282.
- Groundwater sampling continues.
- Anomaly excavation at GP-16 is scheduled to begin in late October.
- As part of ECC's investigation, monitoring wells were installed at MW-290 and MW-292.
 Drilling at MW-291 continues. This rig will be moving to the J-2 Range Wood Road location.
- UXO clearance and pad construction were completed for J1P-21. Clearance at J1P-22 is scheduled for late October.
- Road improvements continue at the Southeast Ranges on Chadwick Road.
- J-3 Range Supplemental soil sampling continues. Soil sampling at the J-3 Range Barrage rocket site was completed. Demolition of the Textron melt pour facility was completed on 10/02.
- Anomaly removal and clearance continued at Demo 1. Clearance of grid D4 was completed; grid still needs QA/QC check performed by the Army Corps. Currently working on clearance at grids C4 and B7. The status of anomaly excavation and removal was provided to the agencies in a figure. Mr. Borci requested that the information provided within the figure showing the completed grid areas be summarized at the bottom of the figure.
- BIPs were completed on 10/08 and 10/15 including at Demo 1 (6 items) and J-3 Range (40MM round).
- 40 MM Rounds staged at J-2 Range were separated for disposal. 321 live components were transferred to the CDC; 3022 complete inert bodies were drummed for eventual demilitarization; 2438 items were drummed as scrap.
- Mr. Fedele to provide Len Pinaud (MADEP) information on the "Droge Gun" identified in grid E5 at the Demo 1 Area.
- The demilitarization plan to be submitted to the agencies by 11/03. At Todd Borci's request, the Army Corps to send an email explaining what plans related to munitions management will be submitted and the information to be covered in each plan.

J-2 Range Investigation

Dave Hill (IAGWSPO) led a discussion on the J-2 Range investigation, distributing two figures, one figure showing the 2003 Modeled Water Table Contours compared to the Observed Water Table Contours in the vicinity of the SE Ranges and one showing the preliminary J-2 Range Monitoring well locations with respect the forward particle track from MW-289.

- Mike Goydas (Jacobs) explained that synoptic water level data in the vicinity of the mound was obtained during the 2003 event, whereas the data for the flank of the mound was from a 2002 synoptic event. Mark Panni (MADEP) requested Mr. Goydas provide him with information as to what area was contoured with 2003 data and what area was contoured with 2002 data.
- Mike Goydas further explained that the proposed downgradient well location on Wood Road (212 feet west of Barlow Road) and Jefferson Road was selected not just based on the forward particle track from MW-289, but also was based on an understanding of the dispersion experienced in the mound vicinity and the information on the transient wobble, characteristic of the mound.
- Todd Borci expressed concern that the proposed well should be located further east, based on backward particle tracks from MW-289 which terminated to the east of the presumed source area. Mr. Goydas recommended EPA review the flow vector map provided at an earlier meeting to more completely understand the reasons for selecting the proposed locations. Mr. Goydas also discounted concerns related to the use of steady state conditions given fluctuations in the position of the mound and recent drought-like conditions, explaining that the highs and lows in the water table are usually very short-lived relative to average conditions.
- There were two options as to the next drilling location; one is to proceed with a second well east of the first well along Wood Road. A second option is to drill the location downgradient of the Wood road well on Jefferson Road. All parties agreed that the decision on which location to drill next would be discussed following receipt and review of the data for the first well on Wood Road. Mr. Hill also expressed the possibility of installing a well between MW-289 and Wood Road.
- Len Pinaud (MADEP) questioned the need to drill a well between MW-289 and Wood Road, expressing the opinion that well fences along Wood Road and Jefferson Roads would be sufficient. Mr. Pinaud further requested the investigation be expedited.
- Jane Dolan (EPA) requested the plume for the J-2 Range be placed on the figures in the future.
- Hap Gonser indicated Dan Mahoney (Sandwich) and Jeff Rose (MADEP Water Supply) have provided the actual pumping rates for the Base Water Supply Wells and the IAGWSP is working on generating ZOCs based on those rates. Len Pinaud requested that Mr. Mahoney and Mr. Rose be kept informed of the details of the ongoing investigation.

Northwest Corner Update

Bill Gallagher (IAGWSPO) provided an update on the Northwest Corner investigation, distributing two figures showing the particle backtracks from MW-284 and one figure and table of preliminary soil sampling results along Canal View Road.

- Soil sampling on Canal View Road was completed, some results are provided on the figure.
- Drilling of MW-287 was completed. Bedrock was encountered at 280 ft bgs; water was encountered at 135 ft bgs. Analytical results from the first 5 intervals are already in, waiting on remaining results, possible screen setting call to be arranged later today. All 5 intervals from 0 to 35 ft bwt have perchlorate, with the highest detection (1.7 ppb) at the water table.
- Groundwater samples from residential wells, RSNW01, RSNW03, RSNW06 were collected on Wednesday.
- Fireworks debris was collected from the powerline easement on Canal View road and stored in a 55-gallon drum. At Len Pinaud's request, pictures of the collected debris to be forwarded to MADEP. Mr. Pinaud suggested that the area of debris be marked on the figure.
- The IAGWSPO was proposing to sample the collected debris for perchlorate using the extraction method (a modified TCLP method) standardized for the soil analysis.

- ROA review for monitoring wells NW-8, NWP-11, and NWP-12 would probably not need to be completed by SHPO. Karen Wilson to conduct a site reconnaissance today to review locations.
- No responses to Army/Guard letters were received from the Regional Tech School or Schooner Pass Condominium Association.
- Particle backtracks were generated for the MW-284M2 and M1 wells screens. The backtrack
 for the M2 screen terminates near Kendrick Road (time of travel 9 years), while the
 backtrack from the M1 screen terminates at the Central Impact Area (time of travel 51.5
 years). This information had previously been distributed in an email.
- 2nd round monitoring results were received for MW-270, the perchlorate concentrations were slightly higher than in the first round samples. In addition, RDX (0.41 ppb) was detected in the shallow, water table well (270S).
- Previous explosives results were reviewed for RSNW03 as requested by Todd Borci. RDX was not observed below the reporting limit for any of these samples.

Western Boundary

Bill Gallagher (IAGWSPO) provided an update on the Western Boundary investigation, distributing figures to support the discussion.

- Groundwater results for MW-280M3 were non detect for perchlorate. Therefore, the profile result of 0.99 at this interval was not confirmed.
- There was a reporting error at the lab, which caused the perchlorate results for MW-226M3 (ND) and MW-233M3 (1.09 ppb) to be switched in the latest update table. Results corrected as shown.
- There have been detections of perchlorate in two sentry wells around Supply Well #6 in recent weeks. A first detection in 97-2E (0.36 ppb) and two detections in a row in 97-2C, although perchlorate has been reported in this well in the past. There have still been no detections in weekly samples collected from the production well itself, which is now being pumped regularly. Leo Yuskus (Haley & Ward) to provide pumping rate to Tech team.
- CBP-7 is the next well to be drilled in the Western Boundary area.
- The IAGWSPO proposed three changes to the investigation to be considered by the agencies:
 - ➤ limit profile sampling depth of BP-6 consistent with BP-6 being installed as a water table well, based on particle tracks from MW-216 and MW-213, which terminated at BP-6
 - limit profile sampling depth at CBP-9 (revised) consistent with being installed as a water table well, based on downgradient particle tracks, which terminate at slightly upgradient MP-4.
 - profile CBP-3 to bedrock.
- All parties agreed on the CBP-3 drilling location and profile depth.
- Leo Yuskus indicated the BWD had no objections to the IAGWSPO proposals but requested CBP-9 be profiled to a depth below the depth of the perchlorate detections and second well screens at MW-276 and MW-216 to verify the clean intervals. Todd Borci requested the depths that particle tracks from surrounding wells would intersect the CBP-9 (revised) borehole.
- Reviewing a figure showing items observed during a reconnaissance of GP-2 upgradient of the Western Boundary Operable Unit, Mr. Borci asked for a briefing on the investigation being conducted Southwest of Range Control.
- Noting the revised drilling location of CBP-9, Len Pinaud requested that various options be considered prior to drilling monitoring wells in undisturbed areas, including drilling the wells in roads which would require temporary road closure or filling in an area along the side of the road to minimize sensitive habitat impact.

Documents and Schedules

Heather Sullivan (ACE) reviewed general document and scheduling issues.

- The Army/Guard agreed to the August LTM additions requested by EPA.
- Revised HUTAI and HUTAII RLSO documents would be submitted in Nov and Dec 2003.
- Revised files for the Demo 1 Soil RRA SAP DEP RCL and EPA MOR would be sent our shortly.
- Demo 1 Soil RRA Plan MOR and GW RRA Plan RCL would be submitted next week.
- Of highest priority for agency comment was the Demo 1 Soil RRA, Soil Treatment Plan and Treatability Study Plan, DEP comments hopefully by next week.
- DEP comment on the Demo 1 Draft Groundwater Report Addendum is also expected by next week.
- Jane Dolan approved the L Range Supplemental Groundwater Work Plan, indicating the plan could go straight to final without the regular comment resolution cycle.
- Ms. Dolan also indicated EPA would provide conditional approval of the J-2 Supplemental Soil Work Plan MOR with comments.
- BIP Reports Jan-March 2002 and April-June 2002 MOR approvals are expected shortly from the agencies.
- In response to Todd Borci's query, Ben Gregson requested a meeting to discuss the Revised Combined Schedule before resubmitting the schedule to the agencies.

2. SUMMARY OF DATA RECEIVED

Rush data are summarized in Table 3. These data are for analyses that are performed on a fast turn around time, typically 1-5 days. Perchlorate and explosive analyses for monitoring wells, and perchlorate, explosive and volatile organic compound (VOC) analyses for groundwater profile samples, are conducted in this timeframe, as well as any analyses pursuant to a special request. The rush data are not validated, but are provided as an indication of the most recent preliminary results. Table 3 summarizes only detects, and does not show samples with non-detects.

The status of the explosive detections with respect to confirmation using Photo Diode Array (PDA) spectra is indicated in Table 3. PDA is a procedure that has been implemented for the explosive analysis, to reduce the likelihood of false positive identifications. Where the PDA status is "YES" in Table 3, the detected compound is verified as properly identified. Where the status is "NO", the identification of an explosive has been determined to be a false positive. Where the status is blank, PDA has not yet been used to evaluate the detection, or PDA is not applicable because the analyte is a VOC or perchlorate. Most explosive detections verified by PDA are confirmed to be present upon completion of validation. Table 3 includes the following detections:

Table 3 includes detections from the following areas:

Bourne Area

 A groundwater sample from 02-13M1 had a detection of perchlorate. The result was similar to previous sampling rounds.

Southeast Ranges

• Groundwater samples from MW-292M1 and M2 had detections of perchlorate. This is the first sampling event for this well and the results were consistent with the profile results.

Northwest Corner

Profile results from MW-287 (NWP-6) had detections of perchlorate, VOCs and explosives.
 None of the detections of explosives were confirmed by PDA spectra. Perchlorate was detected in five intervals between 0 and 35 feet below the water table. Well screens were set at the depth (-2 to 8 ft bwt) corresponding to the highest perchlorate detection and at the depth (25 to 35 ft bwt) corresponding to the deepest perchlorate detection.

DELIVERABLES SUBMITTED

Weekly Progress Update for October 6 – October 10, 2003

10/17/2003

3. SCHEDULED ACTIONS

Scheduled actions for the week of October 20 include complete well installation at MW-287 (NWP-6) and MW-291 (LP-11), complete drilling at MW-285 (CBP-7), and commence drilling at MW-294 (J3P-32) and MW-295 (J2P-29). Groundwater sampling at Bourne water supply and monitoring wells, recently installed wells, and as part of the August round of the Draft 2003 Long-Term Groundwater Monitoring Plan will continue. Soil samples will be collected from BIP craters. Demo Area 1 UXO anomaly removal will also continue.

4. SUMMARY OF ACTIVITIES FOR DEMO AREA 1

Response to agency comments on the Draft Groundwater Report Addendum for the Demo Area 1 Groundwater Operable Unit (OU) and the Groundwater RRA Plan are being prepared. Modeling activities in support of the Feasibility Study (FS) are currently underway.

Geophysical anomaly excavation and removal within the Demo Area 1 depression continues. Responses to EPA comments on the Soil Treatment Plan and Treatability Study are being prepared. DEP comments are expected shortly.

SAMPLE_ID	GIS_LOCID	LOGDATE	SAMP_TYPE	SBD	SED	BWTS	BWTE
ECC100803J1R01	SS15092-A	10/15/2003	CRATER GRAB	0	0.25		
HDA08290202SS1	USA08290202	10/16/2003	CRATER GRAB	0	0.25		
HDA08290202SS2	USA08290202	10/16/2003	CRATER GRAB	0	0.25		
HDA08290202SS3	USA08290202	10/16/2003	CRATER GRAB	0	0.25		
HDA08290202SS4	USA08290202	10/16/2003	CRATER GRAB	0	0.25		
HDA08290202SS5	USA08290202	10/16/2003	CRATER GRAB	0	0.25		
HDA08290202SS6	USA08290202	10/16/2003	CRATER GRAB	0	0.25		
HDA08290202SS7	USA08290202	10/16/2003	CRATER GRAB	0	0.25		
HDA08290202SS8	USA08290202	10/16/2003	CRATER GRAB	0	0.25		
ECC100803J1R01	SS15092-A	10/15/2003	CRATER GRID	0	0.25		
HDTT04120201SS1	TT04120201	10/17/2003	CRATER GRID	0	0.25		
HDTT04120201SS2	TT04120201	10/17/2003	CRATER GRID	0	0.25		
HDTT04120201SS3	TT04120201	10/17/2003	CRATER GRID	0	0.25		
HDTT04120201SS4	TT04120201	10/17/2003	CRATER GRID	0	0.25		
HDTT04120201SS5	TT04120201	10/17/2003	CRATER GRID	0	0.25		
HDTT04120201SS6	TT04120201	10/17/2003	CRATER GRID	0	0.25		
HDTT04120201SS7	TT04120201	10/17/2003	CRATER GRID	0	0.25		
HDTT04120201SS8	TT04120201	10/17/2003	CRATER GRID	0	0.25		
HDTT05230201SS1	TT05230201	10/16/2003	CRATER GRID	0	0.25		
HDTT05230201SS2	TT05230201	10/16/2003	CRATER GRID	0	0.25		
HDTT05230201SS2	TT05230201	10/16/2003	CRATER GRID	0	0.25		
HDTT05230201SS3	TT05230201	10/16/2003	CRATER GRID	0	0.25		
HDTT05230201SS4	TT05230201	10/16/2003	CRATER GRID	0	0.25		
HDTT05230201SS5	TT05230201	10/16/2003	CRATER GRID	0	0.25		
HDTT05230201SS6	TT05230201	10/16/2003	CRATER GRID	0	0.25		
HDTT05230201SS7	TT05230201	10/16/2003	CRATER GRID	0	0.25		
HDTT05230201SS8	TT05230201	10/16/2003	CRATER GRID	0	0.25		
HDTT06020302SS1	TT06020302	10/17/2003	CRATER GRID	0	0.25		
HDTT06020302SS2	TT06020302	10/17/2003	CRATER GRID	0	0.25		
HDTT06020302SS3	TT06020302	10/17/2003	CRATER GRID	0	0.25		
HDTT06020302SS4	TT06020302	10/17/2003	CRATER GRID	0	0.25		
HDTT06020302SS5	TT06020302	10/17/2003	CRATER GRID	0	0.25		
HDTT06020302SS6	TT06020302	10/17/2003	CRATER GRID	0	0.25		
HDTT06020302SS7	TT06020302	10/17/2003	CRATER GRID	0	0.25		
HDTT06020302SS7	TT06020302	10/17/2003	CRATER GRID	0	0.25		
HDTT06020302SS8	TT06020302	10/17/2003	CRATER GRID	0	0.25		
HDTT06020304SS1	TT06020304	10/16/2003	CRATER GRID	0	0.25		
HDTT06020304SS2	TT06020304	10/16/2003	CRATER GRID	0	0.25		
HDTT06020304SS3	TT06020304	10/16/2003	CRATER GRID	0	0.25		
HDTT06020304SS4	TT06020304	10/16/2003	CRATER GRID	0	0.25		

Profiling methods include: Volatiles and Explosives

Groundwater methods include: Volatiles, Semivolatiles, Explosives,

Pesticides, Herbicides, Metals, and Wet Chemistry

Other Sample Types methods are variable

SBD = Sample Begin Depth, measured in feet bgs

SED = Sample End Depth, measured in feet bgs

BWTS = Depth below water table, start depth, measured in feet

SAMPLE_ID	GIS_LOCID	LOGDATE	SAMP_TYPE	SBD	SED	BWTS	BWTE
HDTT06020304SS5	TT06020304	10/16/2003	CRATER GRID	0	0.25		
HDTT06020304SS6	TT06020304	10/16/2003	CRATER GRID	0	0.25		
HDTT06020304SS7	TT06020304	10/16/2003	CRATER GRID	0	0.25		
HDTT06020304SS7	TT06020304	10/16/2003	CRATER GRID	0	0.25		
HDTT06020304SS8	TT06020304	10/16/2003	CRATER GRID	0	0.25		
HDTT06020306SS1	TT06020306	10/16/2003	CRATER GRID	0	0.25		
HDTT06020306SS2	TT06020306	10/16/2003	CRATER GRID	0	0.25		
HDTT06020306SS3	TT06020306	10/16/2003	CRATER GRID	0	0.25		
HDTT06020306SS4	TT06020306	10/16/2003	CRATER GRID	0	0.25		
HDTT06020306SS5	TT06020306	10/16/2003	CRATER GRID	0	0.25		
HDTT06020306SS6	TT06020306	10/16/2003	CRATER GRID	0	0.25		
HDTT06020306SS7	TT06020306	10/16/2003	CRATER GRID	0	0.25		
HDTT06020306SS8	TT06020306	10/16/2003	CRATER GRID	0	0.25		
HDTT06040201SS1	TT06040201	10/14/2003	CRATER GRID	0	0.25		
HDTT06040201SS2	TT06040201	10/14/2003	CRATER GRID	0	0.25		
HDTT06040201SS3	TT06040201	10/14/2003	CRATER GRID	0	0.25		
HDTT06040201SS4	TT06040201	10/14/2003	CRATER GRID	0	0.25		
HDTT06040201SS5	TT06040201	10/14/2003	CRATER GRID	0	0.25		
HDTT06040201SS6	TT06040201	10/14/2003	CRATER GRID	0	0.25		
HDTT06040201SS7	TT06040201	10/14/2003	CRATER GRID	0	0.25		
HDTT06040201SS8	TT06040201	10/14/2003	CRATER GRID	0	0.25		
HDTT06050204SS1	TT06050204	10/14/2003	CRATER GRID	0	0.25		
HDTT06050204SS2	TT06050204	10/14/2003	CRATER GRID	0	0.25		
HDTT06050204SS3	TT06050204	10/14/2003	CRATER GRID	0	0.25		
HDTT06050204SS4	TT06050204	10/14/2003	CRATER GRID	0	0.25		
HDTT06050204SS5	TT06050204	10/14/2003	CRATER GRID	0	0.25		
HDTT06050204SS6	TT06050204	10/14/2003	CRATER GRID	0	0.25		
HDTT06050204SS7	TT06050204	10/14/2003	CRATER GRID	0	0.25		
HDTT06050204SS8	TT06050204	10/14/2003	CRATER GRID	0	0.25		
HDTT06050205SS1	TT06050205	10/14/2003	CRATER GRID	0	0.25		
HDTT06050205SS2	TT06050205	10/14/2003	CRATER GRID	0	0.25		
HDTT06050205SS3	TT06050205	10/14/2003	CRATER GRID	0	0.25		
HDTT06050205SS4	TT06050205	10/14/2003	CRATER GRID	0	0.25		
HDTT06050205SS5	TT06050205	10/14/2003	CRATER GRID	0	0.25		
HDTT06050205SS6	TT06050205	10/14/2003	CRATER GRID	0	0.25		
HDTT06050205SS7	TT06050205	10/14/2003	CRATER GRID	0	0.25		
HDTT06050205SS8	TT06050205	10/14/2003	CRATER GRID	0	0.25		
HDTT06050205SS8	TT06050205	10/14/2003	CRATER GRID	0	0.25		
HDTT06060202SS1	TT06060202	10/14/2003	CRATER GRID	0	0.25		
HDTT06060202SS2	TT06060202	10/14/2003	CRATER GRID	0	0.25		

Profiling methods include: Volatiles and Explosives

Groundwater methods include: Volatiles, Semivolatiles, Explosives,

Pesticides, Herbicides, Metals, and Wet Chemistry

Other Sample Types methods are variable

SBD = Sample Begin Depth, measured in feet bgs

SED = Sample End Depth, measured in feet bgs

BWTS = Depth below water table, start depth, measured in feet

SAMPLE_ID	GIS_LOCID	LOGDATE	SAMP_TYPE	SBD	SED	BWTS	BWTE
HDTT06060202SS3	TT06060202	10/14/2003	CRATER GRID	0	0.25		
HDTT06060202SS4	TT06060202	10/14/2003	CRATER GRID	0	0.25		
HDTT06060202SS5	TT06060202	10/14/2003	CRATER GRID	0	0.25		
HDTT06060202SS6	TT06060202	10/14/2003	CRATER GRID	0	0.25		
HDTT06060202SS6	TT06060202	10/14/2003	CRATER GRID	0	0.25		
HDTT06060202SS7	TT06060202	10/14/2003	CRATER GRID	0	0.25		
HDTT06060202SS8	TT06060202	10/14/2003	CRATER GRID	0	0.25		
HDTT09160202SS1	TT09160202	10/17/2003	CRATER GRID	0	0.25		
HDTT09160202SS2	TT09160202	10/17/2003	CRATER GRID	0	0.25		
HDTT09160202SS3	TT09160202	10/17/2003	CRATER GRID	0	0.25		
HDTT09160202SS3	TT09160202	10/17/2003	CRATER GRID	0	0.25		
HDTT09160202SS4	TT09160202	10/17/2003	CRATER GRID	0	0.25		
HDTT09160202SS5	TT09160202	10/17/2003	CRATER GRID	0	0.25		
HDTT09160202SS6	TT09160202	10/17/2003	CRATER GRID	0	0.25		
HDTT09160202SS7	TT09160202	10/17/2003	CRATER GRID	0	0.25		
HDTT09160202SS8	TT09160202	10/17/2003	CRATER GRID	0	0.25		
HDTT10030202SS1	TT10030202	10/17/2003	CRATER GRID	0	0.25		
HDTT10030202SS2	TT10030202	10/17/2003	CRATER GRID	0	0.25		
HDTT10030202SS3	TT10030202	10/17/2003	CRATER GRID	0	0.25		
HDTT10030202SS4	TT10030202	10/17/2003	CRATER GRID	0	0.25		
HDTT10030202SS5	TT10030202	10/17/2003	CRATER GRID	0	0.25		
HDTT10030202SS6	TT10030202	10/17/2003	CRATER GRID	0	0.25		
HDTT10030202SS7	TT10030202	10/17/2003	CRATER GRID	0	0.25		
HDTT10030202SS8	TT10030202	10/17/2003	CRATER GRID	0	0.25		
HDTT10030202SS8	TT10030202	10/17/2003	CRATER GRID	0	0.25		
HDTT10230203SS1	TT10230203	10/17/2003	CRATER GRID	0	0.25		
HDTT10230203SS2	TT10230203	10/17/2003	CRATER GRID	0	0.25		
HDTT10230203SS3	TT10230203	10/17/2003	CRATER GRID	0	0.25		
HDTT10230203SS4	TT10230203	10/17/2003	CRATER GRID	0	0.25		
HDTT10230203SS5	TT10230203	10/17/2003	CRATER GRID	0	0.25		
HDTT10230203SS6	TT10230203	10/17/2003	CRATER GRID	0	0.25		
HDTT10230203SS7	TT10230203	10/17/2003	CRATER GRID	0	0.25		
HDTT10230203SS8	TT10230203	10/17/2003	CRATER GRID	0	0.25		
HDTT10300214SS1	TT10300214	10/16/2003	CRATER GRID	0	0.25		
HDTT10300214SS2	TT10300214	10/16/2003	CRATER GRID	0	0.25		
HDTT10300214SS3	TT10300214	10/16/2003	CRATER GRID	0	0.25		
HDTT10300214SS4	TT10300214	10/16/2003	CRATER GRID	0	0.25		
HDTT10300214SS4	TT10300214	10/16/2003	CRATER GRID	0	0.25		
HDTT10300214SS5	TT10300214	10/16/2003	CRATER GRID	0	0.25		
HDTT10300214SS6	TT10300214	10/16/2003	CRATER GRID	0	0.25		

Profiling methods include: Volatiles and Explosives

Groundwater methods include: Volatiles, Semivolatiles, Explosives,

Pesticides, Herbicides, Metals, and Wet Chemistry

Other Sample Types methods are variable

SBD = Sample Begin Depth, measured in feet bgs

SED = Sample End Depth, measured in feet bgs

BWTS = Depth below water table, start depth, measured in feet

SAMPLE_ID	GIS_LOCID	LOGDATE	SAMP_TYPE	SBD	SED	BWTS	BWTE
HDTT10300214SS7	TT10300214	10/16/2003	CRATER GRID	0	0.25		
HDTT10300214SS8	TT10300214	10/16/2003	CRATER GRID	0	0.25		
27MW0015B-A	27MW0015B	10/14/2003	GROUNDWATER	101	106	24.6	29.6
27MW0015C-A	27MW0015C	10/14/2003	GROUNDWATER	68.1	78.1	0	10
4036000-01G-A	4036000-01G	10/14/2003	GROUNDWATER	38	69.8	6	12
4036000-06G-A	4036000-06G	10/14/2003	GROUNDWATER	108	128	6	12
90MW0006-A	90MW0006	10/14/2003	GROUNDWATER	129	134	52.85	57.85
90MW0011-A	90MW0011	10/14/2003	GROUNDWATER	46.5	51.5	34.8	39.8
90MW0034-A	90MW0034	10/13/2003	GROUNDWATER	93.71	98.59	28.75	33.63
90MW0039-A	90MW0039	10/13/2003	GROUNDWATER	83.74	88.6		
90MW0080-A	90MW0080	10/14/2003	GROUNDWATER	139	144	87.2	92.2
90MW0102A-A	90MW0102A	10/13/2003	GROUNDWATER	112.9	117.7	108.2	113.2
RSNW01-A	RSNW01	10/15/2003	GROUNDWATER				
RSNW03-A	RSNW03	10/15/2003	GROUNDWATER				
RSNW06-A	RSNW06	10/15/2003	GROUNDWATER				
RSNW06-D	RSNW06	10/15/2003	GROUNDWATER				
W02-02M1A	02-02	10/13/2003	GROUNDWATER	114.5	124.5	63.5	73.5
W02-02M2A	02-02	10/13/2003	GROUNDWATER	94.5	104.5	42.65	52.65
W02-02SSA	02-02	10/13/2003	GROUNDWATER	49.5	59.5	0	10
W02-03M1A	02-03	10/13/2003	GROUNDWATER	130	140	86.1	96.1
W02-03M2A	02-03	10/13/2003	GROUNDWATER	92	102	48.15	58.15
W02-03M3A	02-03	10/13/2003	GROUNDWATER	75	85	31.05	41.05
W02-08M1A	02-08	10/13/2003	GROUNDWATER	108	113	86.56	91.56
W02-08M2A	02-08	10/13/2003	GROUNDWATER	82	87	60.65	65.65
W02-08M2D	02-08	10/13/2003	GROUNDWATER	82	87	60.65	65.65
W02-08M3A	02-08	10/13/2003	GROUNDWATER	62	67	40.58	45.58
W02-13M1A	02-13	10/13/2003	GROUNDWATER	98	108	58.33	68.33
W02-13M1D	02-13	10/13/2003	GROUNDWATER	98	108	58.33	68.33
W02-13M2A	02-13	10/13/2003	GROUNDWATER	83	93	44.2	54.2
W02-13M3A	02-13	10/13/2003	GROUNDWATER	68	78	28.3	38.3
W100M1A	MW-100	10/15/2003	GROUNDWATER	179	189	45	55
W100M1A-QA	MW-100	10/15/2003	GROUNDWATER	179	189	45	55
W100M2A	MW-100	10/15/2003	GROUNDWATER	164	174	30	40
W100M2A-QA	MW-100	10/15/2003	GROUNDWATER	164	174	30	40
W124M2A	MW-124	10/15/2003	GROUNDWATER	219	229	83	93
W144M1A	MW-144	10/16/2003	GROUNDWATER	195	205	168	172
W144M2A	MW-144	10/16/2003	GROUNDWATER	130	140	109	119
W144SSA	MW-144	10/16/2003	GROUNDWATER	26	36	5	15
W144SSA-QA	MW-144	10/16/2003	GROUNDWATER	26	36	5	15
W165M3A	MW-165	10/14/2003	GROUNDWATER	94.5	104.5	16	26

Profiling methods include: Volatiles and Explosives

Groundwater methods include: Volatiles, Semivolatiles, Explosives,

Pesticides, Herbicides, Metals, and Wet Chemistry

Other Sample Types methods are variable

SBD = Sample Begin Depth, measured in feet bgs

SED = Sample End Depth, measured in feet bgs

BWTS = Depth below water table, start depth, measured in feet

SAMPLE_ID	GIS_LOCID	LOGDATE	SAMP_TYPE	SBD	SED	BWTS	BWTE
W172M1A	MW-172	10/14/2003	GROUNDWATER	199	209	134	144
W172M2A	MW-172	10/15/2003	GROUNDWATER	169	179	104	114
W172M3A	MW-172	10/15/2003	GROUNDWATER	109	119	44	54
W180M2A	MW-180	10/15/2003	GROUNDWATER	195	205	34.5	44.5
W180M3A	MW-180	10/15/2003	GROUNDWATER	171	181	10.3	20.3
W180M3D	MW-180	10/15/2003	GROUNDWATER	171	181	10.3	20.3
W205DDA	MW-205	10/17/2003	GROUNDWATER	266	276	167.6	177.6
W205M1A	MW-205	10/15/2003	GROUNDWATER	167	177	67.6	77.6
W207M1A	MW-207	10/15/2003	GROUNDWATER	254	264	100.52	110.52
W207M2A	MW-207	10/15/2003	GROUNDWATER	224	234	79.33	89.33
W208M1A	MW-208	10/15/2003	GROUNDWATER	195	205	56.18	66.18
W208M2A	MW-208	10/15/2003	GROUNDWATER	158	168	18.41	28.41
W39M1A	MW-39	10/17/2003	GROUNDWATER	220	230	84	94
W39M2A	MW-39	10/17/2003	GROUNDWATER	175	185	39	49
W39M2D	MW-39	10/17/2003	GROUNDWATER	175	185	39	49
W43M1A	MW-43	10/16/2003	GROUNDWATER	223	233	90	100
W43M2A	MW-43	10/16/2003	GROUNDWATER	200	210	67	77
W43M2A-QA	MW-43	10/16/2003	GROUNDWATER	200	210	67	77
W43SSA	MW-43	10/16/2003	GROUNDWATER	129	139	0	10
W80DDA	MW-80	10/16/2003	GROUNDWATER	158	168	114	124
W80M1A	MW-80	10/15/2003	GROUNDWATER	130	140	86	96
W80M2A	MW-80	10/15/2003	GROUNDWATER	100	110	56	66
W80M3A	MW-80	10/15/2003	GROUNDWATER	70	80	26	36
W80SSA	MW-80	10/16/2003	GROUNDWATER	43	53	0	10
W87M1A	MW-87	10/17/2003	GROUNDWATER	194	204	62	72
W87M2A	MW-87	10/17/2003	GROUNDWATER	169	179	37	47
W87M3A	MW-87	10/17/2003	GROUNDWATER	140	150	8	18
W88M1A	MW-88	10/16/2003	GROUNDWATER	233	243	92	102
W88M2A	MW-88	10/16/2003	GROUNDWATER	213	223	72	82
W88M2A-QA	MW-88	10/16/2003	GROUNDWATER	213	223	72	82
W88M3A	MW-88	10/16/2003	GROUNDWATER	173	183	32	42
W92M1A	MW-92	10/17/2003	GROUNDWATER	165	175	25	35
W92SSA	MW-92	10/17/2003	GROUNDWATER	139	149	0	10
W94M1A	MW-94	10/16/2003	GROUNDWATER	160	170	36	46
W95M1A	MW-95	10/15/2003	GROUNDWATER	202	212	78	88
W95M2A	MW-95	10/15/2003	GROUNDWATER	167	177	43	53
W95M2D	MW-95	10/15/2003	GROUNDWATER	167	177	43	53
W95SSA	MW-95	10/15/2003	GROUNDWATER	125.2	135.2	1	11
DW101603-NV	GAC WATER	10/16/2003	IDW	0	0		
DW101703-NV	GAC WATER	10/17/2003	IDW	0	0		

Profiling methods include: Volatiles and Explosives

Groundwater methods include: Volatiles, Semivolatiles, Explosives,

Pesticides, Herbicides, Metals, and Wet Chemistry

Other Sample Types methods are variable

SBD = Sample Begin Depth, measured in feet bgs

SED = Sample End Depth, measured in feet bgs

BWTS = Depth below water table, start depth, measured in feet

SAMPLE_ID	GIS_LOCID	LOGDATE	SAMP_TYPE	SBD	SED	BWTS	BWTE
JEGACDLM01	GACWATER	10/15/2003	IDW	0	0		
JEGACDLM01	GACWATER	10/14/2003	IDW	0	0		
JEGACDLM01	GACWATER	10/14/2003	IDW	0	0		
JEGACDLM01	GACWATER	10/14/2003	IDW	0	0		
G287DNA	MW-287	10/14/2003	PROFILE	260	260	125.4	125.4
G287DOA	MW-287	10/14/2003	PROFILE	270	270	135.4	135.4
G287DPA	MW-287	10/14/2003	PROFILE	280	280	145.4	145.4
MW-291-07	MW-291	10/14/2003	PROFILE	180	180	86	86
MW-291-07	MW-291	10/14/2003	PROFILE	180	180	86	86
MW-291-08	MW-291	10/14/2003	PROFILE	190	190	96	96
MW-291-08	MW-291	10/14/2003	PROFILE	190	190	96	96
MW-291-09	MW-291	10/14/2003	PROFILE	200	200	106	106
MW-291-09	MW-291	10/14/2003	PROFILE	200	200	106	106
MW-291-10	MW-291	10/14/2003	PROFILE	210	210	116	116
MW-291-10	MW-291	10/14/2003	PROFILE	210	210	116	116
MW-291-11	MW-291	10/14/2003	PROFILE	220	220	126	126
MW-291-11	MW-291	10/14/2003	PROFILE	220	220	126	126
MW-291-12	MW-291	10/14/2003	PROFILE	230	230	136	136
MW-291-12	MW-291	10/14/2003	PROFILE	230	230	136	136
MW-291-13	MW-291	10/15/2003	PROFILE	240	240	146	146
MW-291-13	MW-291	10/15/2003	PROFILE	240	240	146	146
MW-291-14	MW-291	10/15/2003	PROFILE	250	250	156	156
MW-291-14	MW-291	10/15/2003	PROFILE	250	250	156	156
MW-291-15	MW-291	10/15/2003	PROFILE	260	260	166	166
MW-291-15	MW-291	10/15/2003	PROFILE	260	260	166	166
MW-291-16	MW-291	10/15/2003	PROFILE	270	270	176	176
MW-291-16	MW-291	10/15/2003	PROFILE	270	270	176	176
MW-291-17	MW-291	10/16/2003	PROFILE	280	280	186	186
MW-291-17	MW-291	10/16/2003	PROFILE	280	280	186	186
MW-291-18	MW-291	10/16/2003	PROFILE	290	290	196	196
MW-291-18	MW-291	10/16/2003	PROFILE	290	290	196	196
102EB-01	SS15014-A	10/17/2003	Soil Grid Compo	0	0.25		
102EB-02	SS15014-A	10/17/2003	Soil Grid Compo	0.5	1		
102HA-01	SS15015-A	10/16/2003	Soil Grid Compo	0	0.5		
102HA-01	SS15015-A	10/16/2003	Soil Grid Compo	0	0.5		
102HA-02	SS15015-A	10/16/2003	Soil Grid Compo	1.5	2		
102HA-02	SS15015-A	10/16/2003	Soil Grid Compo	1.5	2		
102HB-01	SS15017-A	10/14/2003	Soil Grid Compo	0	0.25		
102HB-01	SS15017-A	10/14/2003	Soil Grid Compo	0	0.25		
102HB-02	SS15017-A	10/14/2003	Soil Grid Compo	0.25	0.5		

Profiling methods include: Volatiles and Explosives

Groundwater methods include: Volatiles, Semivolatiles, Explosives,

Pesticides, Herbicides, Metals, and Wet Chemistry

Other Sample Types methods are variable

SBD = Sample Begin Depth, measured in feet bgs

SED = Sample End Depth, measured in feet bgs

BWTS = Depth below water table, start depth, measured in feet

SAMPLE_ID	GIS_LOCID	LOGDATE	SAMP_TYPE	SBD	SED	BWTS	BWTE
102HB-02	SS15017-A	10/14/2003	Soil Grid Compo	0.25	0.5		
102HB-03	SS15017-A	10/14/2003	Soil Grid Compo	0.5	1		
102HB-03	SS15017-A	10/14/2003	Soil Grid Compo	0.5	1		
102HC-01	SS15018-A	10/14/2003	Soil Grid Compo	0	0.25		
102HC-01	SS15018-A	10/14/2003	Soil Grid Compo	0	0.25		
102HC-02	SS15018-A	10/14/2003	Soil Grid Compo	0.25	0.5		
102HC-02	SS15018-A	10/14/2003	Soil Grid Compo	0.25	0.5		
102HC-03	SS15018-A	10/14/2003	Soil Grid Compo	0.5	1		
102HC-03	SS15018-A	10/14/2003	Soil Grid Compo	0.5	1		
102HD-01	SS15019-A	10/15/2003	Soil Grid Compo	0	0.25		
102HD-01	SS15019-A	10/15/2003	Soil Grid Compo	0	0.25		
102HD-02	SS15019-A	10/15/2003	Soil Grid Compo	0.25	0.5		
102HD-02	SS15019-A	10/15/2003	Soil Grid Compo	0.25	0.5		
102HD-03	SS15019-A	10/15/2003	Soil Grid Compo	0.5	1		
102HD-03	SS15019-A	10/15/2003	Soil Grid Compo	0.5	1		
102HH-01	SS15016-A	10/16/2003	Soil Grid Compo	0	0.5		
102HH-01	SS15016-A	10/16/2003	Soil Grid Compo	0	0.5		
102HH-02	SS15016-A	10/16/2003	Soil Grid Compo	1.5	2		
102HH-02	SS15016-A	10/16/2003	Soil Grid Compo	1.5	2		
102IB-01	SS15022-A	10/17/2003	Soil Grid Compo	1.5	2		
102IB-01	SS15022-A	10/17/2003	Soil Grid Compo	1.5	2		
102IP-01	SS15027-A	10/17/2003	Soil Grid Compo	0	0.5		
102IP-01	SS15027-A	10/17/2003	Soil Grid Compo	0	0.5		
102IP-02	SS15027-A	10/17/2003	Soil Grid Compo	1.5	2		
102IP-02	SS15027-A	10/17/2003	Soil Grid Compo	1.5	2		
102IQ-01	SS15028-A	10/16/2003	Soil Grid Compo	0	0.5		
102IQ-01	SS15028-A	10/16/2003	Soil Grid Compo	0	0.5		
102IQ-02	SS15028-A	10/16/2003	Soil Grid Compo	1.5	2		
102IQ-02	SS15028-A	10/16/2003	Soil Grid Compo	1.5	2		
LKSNK0005AAA	LKSNK0005	10/14/2003	SURFACE WATER				
LKSNK0006AAA	LKSNK0006	10/14/2003	SURFACE WATER				
LKSNK0007AAA	LKSNK0007	10/14/2003	SURFACE WATER				

Profiling methods include: Volatiles and Explosives

Groundwater methods include: Volatiles, Semivolatiles, Explosives,

Pesticides, Herbicides, Metals, and Wet Chemistry

Other Sample Types methods are variable

SBD = Sample Begin Depth, measured in feet bgs

SED = Sample End Depth, measured in feet bgs

BWTS = Depth below water table, start depth, measured in feet

TABLE 3
DETECTED COMPOUNDS-UNVALIDATED
SAMPLES COLLECTED 09/19/03 - 10/18/03

SAMPLE_ID	LOCID OR WELL	SAMPLED	SAMP_TYPE	SBD	SED	BWTS	BWTE	METHOD	ANALYTE	PDA
W02-13M1A	02-13	10/13/2003	GROUNDWATER	98	108	58.33	68.33	E314.0	PERCHLORATE	
W292M1	MW-292	10/09/2003	GROUNDWATER	282.08	292.09	186.28	196.29	E314.0	Perchlorate	
W292M2	MW-292	10/09/2003	GROUNDWATER	155.15	165.15	59.35	69.35	E314.0	Perchlorate	
G287DAA	MW-287	10/03/2003	PROFILE	135	135	0.4	0.4	8330N	NITROBENZENE	NO
G287DAA	MW-287	10/03/2003	PROFILE	135	135	0.4	0.4	8330N	PENTAERYTHRITOL TETRANITRATE	NO*
G287DAA	MW-287	10/03/2003	PROFILE	135	135	0.4	0.4	8330N	4-NITROTOLUENE	NO*
G287DAA	MW-287	10/03/2003	PROFILE	135	135	0.4	0.4	8330N	2,6-DINITROTOLUENE	NO*
G287DAA	MW-287	10/03/2003	PROFILE	135	135	0.4	0.4	8330N	2,4,6-TRINITROTOLUENE	NO*
G287DAA	MW-287	10/03/2003	PROFILE	135	135	0.4	0.4	8330N	3-NITROTOLUENE	NO*
G287DAA	MW-287	10/03/2003	PROFILE	135	135	0.4	0.4	8330N	NITROGLYCERIN	NO*
G287DAA	MW-287	10/03/2003	PROFILE	135	135	0.4	0.4	E314.0	PERCHLORATE	
G287DAA	MW-287	10/03/2003	PROFILE	135	135	0.4	0.4	OC21V	CHLOROFORM	
G287DAA	MW-287	10/03/2003	PROFILE	135	135	0.4	0.4	OC21V	ACETONE	
G287DAA	MW-287	10/03/2003	PROFILE	135	135	0.4	0.4	OC21V	CHLOROMETHANE	
G287DBA	MW-287	10/07/2003	PROFILE	140	140	5.4	5.4	8330N	NITROGLYCERIN	NO*
G287DBA	MW-287	10/07/2003	PROFILE	140	140	5.4	5.4	8330N	PICRIC ACID	NO*
G287DBA	MW-287	10/07/2003	PROFILE	140	140	5.4	5.4	8330N	2-NITROTOLUENE	NO*
G287DBA	MW-287	10/07/2003	PROFILE	140	140	5.4	5.4	8330N	4-NITROTOLUENE	NO*
G287DBA	MW-287	10/07/2003	PROFILE	140	140	5.4	5.4	8330N	2,4,6-TRINITROTOLUENE	NO*
G287DBA	MW-287	10/07/2003	PROFILE	140	140	5.4	5.4	8330N	NITROBENZENE	NO*
G287DBA	MW-287	10/07/2003	PROFILE	140	140	5.4	5.4	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	NO*
G287DBA	MW-287	10/07/2003	PROFILE	140	140	5.4	5.4	8330N	2,6-DINITROTOLUENE	NO*
G287DBA	MW-287	10/07/2003	PROFILE	140	140	5.4	5.4	8330N	3-NITROTOLUENE	NO*
G287DBA	MW-287	10/06/2003	PROFILE	140	140	5.4	5.4	E314.0	PERCHLORATE	
G287DBA	MW-287	10/06/2003	PROFILE	140	140	5.4	5.4	OC21V	CHLOROMETHANE	
G287DBA	MW-287	10/06/2003	PROFILE	140	140	5.4	5.4	OC21V	METHYL ETHYL KETONE (2-BUTANONE)	
G287DBA	MW-287	10/06/2003	PROFILE	140	140	5.4	5.4	OC21V	CHLOROFORM	

SBD = SAMPLE COLLECTION BEGIN DEPTH IN FEET BELOW GROUND SURFACE

SED = SAMPLE COLLECTION END DEPTH IN FEET BELOW GROUND SURFACE

BWTS = DEPTH BELOW WATER TABLE, START DEPTH, MEASURED IN FEET

BWTE = DEPTH BELOW WATER TABLE, END DEPTH, MEASURED IN FEET

PDA/YES = Photo Diode Array, Detect Confirmed

^{* =} Interference in sample

^{+ =} PDAs are not good matches

TABLE 3
DETECTED COMPOUNDS-UNVALIDATED
SAMPLES COLLECTED 09/19/03 - 10/18/03

SAMPLE_ID	LOCID OR WELL	SAMPLED	SAMP_TYPE	SBD	SED	BWTS	BWTE	METHOD	ANALYTE	PDA
G287DBA	MW-287	10/06/2003	PROFILE	140	140	5.4	5.4	OC21V	ACETONE	
G287DCA	MW-287	10/07/2003	PROFILE	150	150	15.4	15.4	E314.0	PERCHLORATE	
G287DCA	MW-287	10/07/2003	PROFILE	150	150	15.4	15.4	OC21V	METHYL ETHYL KETONE (2-BUTANONE)	
G287DCA	MW-287	10/07/2003	PROFILE	150	150	15.4	15.4	OC21V	CHLOROFORM	
G287DCA	MW-287	10/07/2003	PROFILE	150	150	15.4	15.4	OC21V	CHLOROMETHANE	
G287DCA	MW-287	10/07/2003	PROFILE	150	150	15.4	15.4	OC21V	ACETONE	
G287DDA	MW-287	10/07/2003	PROFILE	160	160	25.4	25.4	E314.0	PERCHLORATE	
G287DDA	MW-287	10/07/2003	PROFILE	160	160	25.4	25.4	OC21V	CARBON DISULFIDE	
G287DDA	MW-287	10/07/2003	PROFILE	160	160	25.4	25.4	OC21V	CHLOROFORM	
G287DDA	MW-287	10/07/2003	PROFILE	160	160	25.4	25.4	OC21V	METHYL ETHYL KETONE (2-BUTANONE)	
G287DDA	MW-287	10/07/2003	PROFILE	160	160	25.4	25.4	OC21V	ACETONE	
G287DEA	MW-287	10/08/2003	PROFILE	170	170	35.4	35.4	8330N	NITROGLYCERIN	NO
G287DEA	MW-287	10/08/2003	PROFILE	170	170	35.4	35.4	8330N	2,6-DINITROTOLUENE	NO
G287DEA	MW-287	10/08/2003	PROFILE	170	170	35.4	35.4	E314.0	PERCHLORATE	
G287DEA	MW-287	10/08/2003	PROFILE	170	170	35.4	35.4	OC21V	ACETONE	
G287DEA	MW-287	10/08/2003	PROFILE	170	170	35.4	35.4	OC21V	METHYL ETHYL KETONE (2-BUTANONE)	
G287DEA	MW-287	10/08/2003	PROFILE	170	170	35.4	35.4	OC21V	CHLOROMETHANE	
G287DEA	MW-287	10/08/2003	PROFILE	170	170	35.4	35.4	OC21V	CHLOROFORM	
G287DFA	MW-287	10/08/2003	PROFILE	180	180	45.4	45.4	8330N	TETRYL	NO*
G287DFA	MW-287	10/08/2003	PROFILE	180	180	45.4	45.4	8330N	1,3-DINITROBENZENE	NO*
G287DFA	MW-287	10/08/2003	PROFILE	180	180	45.4	45.4	8330N	1,3,5-TRINITROBENZENE	NO*
G287DFA	MW-287	10/08/2003	PROFILE	180	180	45.4	45.4	8330N	PICRIC ACID	NO*
G287DFA	MW-287	10/08/2003	PROFILE	180	180	45.4	45.4	8330N	NITROBENZENE	NO*
G287DFA	MW-287	10/08/2003	PROFILE	180	180	45.4	45.4	8330N	2,6-DINITROTOLUENE	NO*
G287DFA	MW-287	10/08/2003	PROFILE	180	180	45.4	45.4	8330N	2,4,6-TRINITROTOLUENE	NO*
G287DFA	MW-287	10/08/2003	PROFILE	180	180	45.4	45.4	8330N	NITROGLYCERIN	NO*
G287DGA	MW-287	10/09/2003	PROFILE	190	190	55.4	55.4	8330N	2,6-DINITROTOLUENE	NO*

SBD = SAMPLE COLLECTION BEGIN DEPTH IN FEET BELOW GROUND SURFACE

SED = SAMPLE COLLECTION END DEPTH IN FEET BELOW GROUND SURFACE

BWTS = DEPTH BELOW WATER TABLE, START DEPTH, MEASURED IN FEET

BWTE = DEPTH BELOW WATER TABLE, END DEPTH, MEASURED IN FEET

PDA/YES = Photo Diode Array, Detect Confirmed

^{* =} Interference in sample

^{+ =} PDAs are not good matches

TABLE 3
DETECTED COMPOUNDS-UNVALIDATED
SAMPLES COLLECTED 09/19/03 - 10/18/03

SAMPLE_ID	LOCID OR WELL	SAMPLED	SAMP_TYPE	SBD	SED	BWTS	BWTE	METHOD	ANALYTE	PDA
G287DGA	MW-287	10/09/2003	PROFILE	190	190	55.4	55.4	8330N	1,3,5-TRINITROBENZENE	NO*
G287DGA	MW-287	10/09/2003	PROFILE	190	190	55.4	55.4	8330N	NITROGLYCERIN	NO*
G287DGA	MW-287	10/09/2003	PROFILE	190	190	55.4	55.4	8330N	1,3-DINITROBENZENE	NO*
G287DGA	MW-287	10/09/2003	PROFILE	190	190	55.4	55.4	8330N	2,4,6-TRINITROTOLUENE	NO*
G287DHA	MW-287	10/09/2003	PROFILE	200	200	65.4	65.4	8330N	1,3,5-TRINITROBENZENE	NO*
G287DHA	MW-287	10/09/2003	PROFILE	200	200	65.4	65.4	8330N	2,4,6-TRINITROTOLUENE	NO*
G287DHA	MW-287	10/09/2003	PROFILE	200	200	65.4	65.4	8330N	NITROBENZENE	NO*
G287DHA	MW-287	10/09/2003	PROFILE	200	200	65.4	65.4	8330N	2,6-DINITROTOLUENE	NO*
G287DHA	MW-287	10/09/2003	PROFILE	200	200	65.4	65.4	8330N	NITROGLYCERIN	NO*
G287DHA	MW-287	10/09/2003	PROFILE	200	200	65.4	65.4	8330N	1,3-DINITROBENZENE	NO*
G287DHD	MW-287	10/09/2003	PROFILE	200	200	65.4	65.4	8330N	NITROBENZENE	NO*
G287DHD	MW-287	10/09/2003	PROFILE	200	200	65.4	65.4	8330N	2,6-DINITROTOLUENE	NO*
G287DHD	MW-287	10/09/2003	PROFILE	200	200	65.4	65.4	8330N	TETRYL	NO*
G287DHD	MW-287	10/09/2003	PROFILE	200	200	65.4	65.4	8330N	1,3-DINITROBENZENE	NO*
G287DHD	MW-287	10/09/2003	PROFILE	200	200	65.4	65.4	8330N	1,3,5-TRINITROBENZENE	NO*
G287DHD	MW-287	10/09/2003	PROFILE	200	200	65.4	65.4	8330N	NITROGLYCERIN	NO*
G287DHD	MW-287	10/09/2003	PROFILE	200	200	65.4	65.4	8330N	2,4,6-TRINITROTOLUENE	NO*
G287DJA	MW-287	10/09/2003	PROFILE	220	220	85.4	85.4	8330N	NITROBENZENE	NO*
G287DJA	MW-287	10/09/2003	PROFILE	220	220	85.4	85.4	8330N	4-NITROTOLUENE	NO*
G287DJA	MW-287	10/09/2003	PROFILE	220	220	85.4	85.4	8330N	2,6-DINITROTOLUENE	NO*
G287DJA	MW-287	10/09/2003	PROFILE	220	220	85.4	85.4	8330N	PENTAERYTHRITOL TETRANITRATE	NO*
G287DJA	MW-287	10/09/2003	PROFILE	220	220	85.4	85.4	8330N	3-NITROTOLUENE	NO*
G287DJA	MW-287	10/09/2003	PROFILE	220	220	85.4	85.4	8330N	PICRIC ACID	NO*
G287DJA	MW-287	10/09/2003	PROFILE	220	220	85.4	85.4	8330N	2-AMINO-4,6-DINITROTOLUENE	NO*
G287DJA	MW-287	10/09/2003	PROFILE	220	220	85.4	85.4	8330N	4-AMINO-2,6-DINITROTOLUENE	NO*
G287DJA	MW-287	10/09/2003	PROFILE	220	220	85.4	85.4	8330N	2,4,6-TRINITROTOLUENE	NO*
G287DJA	MW-287	10/09/2003	PROFILE	220	220	85.4	85.4	8330N	2-NITROTOLUENE	NO*

SBD = SAMPLE COLLECTION BEGIN DEPTH IN FEET BELOW GROUND SURFACE

SED = SAMPLE COLLECTION END DEPTH IN FEET BELOW GROUND SURFACE

BWTS = DEPTH BELOW WATER TABLE, START DEPTH, MEASURED IN FEET

BWTE = DEPTH BELOW WATER TABLE, END DEPTH, MEASURED IN FEET

PDA/YES = Photo Diode Array, Detect Confirmed

^{* =} Interference in sample

^{+ =} PDAs are not good matches

TABLE 3
DETECTED COMPOUNDS-UNVALIDATED
SAMPLES COLLECTED 09/19/03 - 10/18/03

SAMPLE_ID	LOCID OR WELL	SAMPLED	SAMP_TYPE	SBD	SED	BWTS	BWTE	METHOD	ANALYTE	PDA
G287DJA	MW-287	10/09/2003	PROFILE	220	220	85.4	85.4	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	NO*
G287DJA	MW-287	10/09/2003	PROFILE	220	220	85.4	85.4	8330N	NITROGLYCERIN	NO*
G287DMA	MW-287	10/10/2003	PROFILE	250	250	115.4	115.4	8330N	PICRIC ACID	NO*
G287DMA	MW-287	10/10/2003	PROFILE	250	250	115.4	115.4	8330N	4-AMINO-2,6-DINITROTOLUENE	NO*
G287DMA	MW-287	10/10/2003	PROFILE	250	250	115.4	115.4	8330N	NITROGLYCERIN	NO*
G287DMA	MW-287	10/10/2003	PROFILE	250	250	115.4	115.4	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	NO*
G287DMA	MW-287	10/10/2003	PROFILE	250	250	115.4	115.4	8330N	2,4,6-TRINITROTOLUENE	NO*
G287DMA	MW-287	10/10/2003	PROFILE	250	250	115.4	115.4	8330N	2,6-DINITROTOLUENE	NO*
G287DMA	MW-287	10/10/2003	PROFILE	250	250	115.4	115.4	8330N	PENTAERYTHRITOL TETRANITRATE	NO*
G287DMA	MW-287	10/10/2003	PROFILE	250	250	115.4	115.4	8330N	2-AMINO-4,6-DINITROTOLUENE	NO*
G287DMD	MW-287	10/10/2003	PROFILE	250	250	115.4	115.4	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	NO*
G287DMD	MW-287	10/10/2003	PROFILE	250	250	115.4	115.4	8330N	2,4,6-TRINITROTOLUENE	NO*
G287DMD	MW-287	10/10/2003	PROFILE	250	250	115.4	115.4	8330N	PICRIC ACID	NO*
G287DMD	MW-287	10/10/2003	PROFILE	250	250	115.4	115.4	8330N	NITROGLYCERIN	NO*
G287DMD	MW-287	10/10/2003	PROFILE	250	250	115.4	115.4	8330N	2,6-DINITROTOLUENE	NO*
G287DMD	MW-287	10/10/2003	PROFILE	250	250	115.4	115.4	8330N	2-AMINO-4,6-DINITROTOLUENE	NO*
G287DNA	MW-287	10/14/2003	PROFILE	260	260	125.4	125.4	8330N	2,4,6-TRINITROTOLUENE	NO*
G287DNA	MW-287	10/14/2003	PROFILE	260	260	125.4	125.4	8330N	PICRIC ACID	NO*
G287DNA	MW-287	10/14/2003	PROFILE	260	260	125.4	125.4	8330N	2-NITROTOLUENE	NO*
G287DNA	MW-287	10/14/2003	PROFILE	260	260	125.4	125.4	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	NO*
G287DNA	MW-287	10/14/2003	PROFILE	260	260	125.4	125.4	8330N	PENTAERYTHRITOL TETRANITRATE	NO*
G287DNA	MW-287	10/14/2003	PROFILE	260	260	125.4	125.4	8330N	3-NITROTOLUENE	NO*
G287DNA	MW-287	10/14/2003	PROFILE	260	260	125.4	125.4	8330N	4-NITROTOLUENE	NO*
G287DOA	MW-287	10/14/2003	PROFILE	270	270	135.4	135.4	8330N	2,6-DINITROTOLUENE	NO*
G287DOA	MW-287	10/14/2003	PROFILE	270	270	135.4	135.4	8330N	NITROBENZENE	NO*
G287DOA	MW-287	10/14/2003	PROFILE	270	270	135.4	135.4	8330N	2,4,6-TRINITROTOLUENE	NO*
G287DOA	MW-287	10/14/2003	PROFILE	270	270	135.4	135.4	8330N	4-NITROTOLUENE	NO*

SBD = SAMPLE COLLECTION BEGIN DEPTH IN FEET BELOW GROUND SURFACE

SED = SAMPLE COLLECTION END DEPTH IN FEET BELOW GROUND SURFACE

BWTS = DEPTH BELOW WATER TABLE, START DEPTH, MEASURED IN FEET

BWTE = DEPTH BELOW WATER TABLE, END DEPTH, MEASURED IN FEET

PDA/YES = Photo Diode Array, Detect Confirmed

^{* =} Interference in sample

^{+ =} PDAs are not good matches

TABLE 3 DETECTED COMPOUNDS-UNVALIDATED SAMPLES COLLECTED 09/19/03 - 10/18/03

SAMPLE_ID	LOCID OR WELL	SAMPLED	SAMP_TYPE	SBD	SED	BWTS	BWTE	METHOD	ANALYTE	PDA
G287DOA	MW-287	10/14/2003	PROFILE	270	270	135.4	135.4	8330N	2-NITROTOLUENE	NO*
G287DOA	MW-287	10/14/2003	PROFILE	270	270	135.4	135.4	8330N	PENTAERYTHRITOL TETRANITRATE	NO*
G287DOA	MW-287	10/14/2003	PROFILE	270	270	135.4	135.4	8330N	PICRIC ACID	NO*
G287DOA	MW-287	10/14/2003	PROFILE	270	270	135.4	135.4	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	NO*
G287DOA	MW-287	10/14/2003	PROFILE	270	270	135.4	135.4	8330N	3-NITROTOLUENE	NO*
G287DPA	MW-287	10/14/2003	PROFILE	280	280	145.4	145.4	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	NO*

DATA REPORTED REFLECT CURRENT DATABASE FOR SAMPLES COLLECTED IN SPECIFIED TIMEFRAME. NOT ALL RESULTS ARE COMPLETE.

SBD = SAMPLE COLLECTION BEGIN DEPTH IN FEET BELOW GROUND SURFACE

SED = SAMPLE COLLECTION END DEPTH IN FEET BELOW GROUND SURFACE

BWTS = DEPTH BELOW WATER TABLE, START DEPTH, MEASURED IN FEET

BWTE = DEPTH BELOW WATER TABLE, END DEPTH, MEASURED IN FEET

PDA/YES = Photo Diode Array, Detect Confirmed

^{* =} Interference in sample

^{+ =} PDAs are not good matches