WEEKLY PROGRESS UPDATE FOR JUNE 10 – JUNE 14, 2002

EPA REGION I ADMINISTRATIVE ORDERS SDWA 1-97-1019 & 1-2000-0014 MASSACHUSETTS MILITARY RESERVATION TRAINING RANGE AND IMPACT AREA

The following summary of progress is for the period from June 10 through June 14, 2002.

1. SUMMARY OF ACTIONS TAKEN

Drilling progress as of June 14 is summarized in Table 1.

	Table 1. Drilling progr	ess as of Ju	ne 14, 2002	
Boring Number	Purpose of Boring/Well	Total Depth (ft bgs)	Saturated Depth (ft bwt)	Completed Well Screens (ft bgs)
MW-219	Base Water Supply #4 (WS4P-1)	378	191	
MW-223	Central Impact Area (CIAP-25)	270	178	
MW-224	Central Impact Area (CIAP-12)	303	181	115-125; 142-152
MW-225	Demo Area 1 (D1P-13)	150	52	
MW-227	Greenway Rd (J3P-18)	70	17	
	v ground surface v water table			

Completed well installation of MW-224 (CIAP-12), commenced well installation of MW-219 (WS4P-1) and MW-223 (CIAP-25), and commenced drilling of MW-225 (D1P-13) and MW-227 (J3P-18). Continued well development for newly installed wells.

Samples collected during the reporting period are summarized in Table 2. Groundwater profile samples were collected from MW-225 and MW-227. Groundwater samples were collected from Bourne supply wells, far field, monitoring wells, and spring; from recently installed wells; and as part of the April Long Term Groundwater Monitoring round. Groundwater samples were also collected from a Snake Pond area residential well and as part of the Central Impact Area Step Test. Water samples were collected from the GAC treatment system. Soil samples were collected as part of the Central Impact Area perchlorate characterization.

As part of the Munitions Survey Project, pre-detonation and post-detonation soil samples were collected from the J-1, J-2, J-3, and U Ranges. Soil samples were collected from the J-1 Range Polygons. Samples were collected from a waxy substance found in the J-1 Range Polygon 10.

The following are the notes from the June 13, 2002 Technical Team meeting at the IAGWSPO:

Punchlist Items

#3 Provide test results for chemical monitoring wells for WS-1, 2, 3 (JPO). JPO is working with MADEP and the Co-op on the draft results. The results have not been released yet and all the results may not have been received from the laboratory.

- #7 Provide ARA's results for perchlorate analysis (Corps). Results not completed yet. All results should be received by next week.
- #8 Provide update on BOMARC solid rocket fuel (Corps). Nick laiennaro (Corps) is waiting on information from an identified source.
- #9 Provide access update on private Snake Pond property (Guard). Possible meeting next week between Mike Minior and homeowner is being arranged.

Munitions Survey Project Update

Rob Foti (Corps) provided an update on the MSP3 tasks.

J Range Polygons. Excavation of J-1 and J-3 Ranges Polygons is complete.

<u>U Range</u> - Approval has been received for brush cutting and "mag and flag" activities. Crews to begin tomorrow, 6/14.

<u>Barrage Rocket Site</u> - Ellen Iorio (Corps) indicated that the Corps has revised the scope of work to replace the proposed grids with transects in about the same areas. This change is proposed to minimize the disturbance of this area, which has been characterized as endangered species habitat. This revised scope will be forwarded to the agencies.

Eastern Test Site - Excavation of nine anomalies to be scheduled for the end of June.

Scar Site - Grubbing being conducted by two crews.

<u>AIRMAG</u> - Ellen Iorio (Corps) indicated that the various locations that EPA had requested were added to the Workplan. Todd Borci (EPA) to review MOR by end of the day Monday, 6/17.

BIPs - 41 UXO items from the J-1 and J-3 Ranges to be destroyed in place on Thursday, 6/13:

- 1 60MM Mortar, M49HE with Unknown PD Fuze
- 2 3.5" Practice Rockets, M29 with M404 BD Fuzes
- 9 40MM Grenades, HEDP (Inert Body) with M520 PD Fuzes
- 10 105MM HE Projectiles, M1 with M51 Series PD Fuzes
- 18 105MM HEAT Projectiles, M456 with M509 Series PIBD Fuzes
- 1 2.36" HEAT Rockets, M6 with M400 BD Fuze

Central Impact Area Update

Heather Sullivan (Corps) provided information on the status of the Central Impact Area investigation.

- The Step Test is being conducted today; the Pump Test to commence on Monday, 6/17.
- Drill rigs are setting screens for CIAP-25 (MW-223) and CIAP-12 (MW-224) and will then
 move to the J Ranges. Well installation has been completed at CIAP-11 (MW-220); this drill
 rig will move to commence drilling of D1P-13 in the Demo 1 Area.
- Development of MW-206 will be completed today, and will be sampled next week.

Bourne Area Update

Bill Gallagher (IAGWSPO) provided an update on the Bourne area investigation.

- Three well screens were selected by the Tech team for installation of WS4P-1 (MW-219). MADEP Water Supply requested a fourth, deeper screen at approximately 180-190 ft below the water table. This screen was requested based on concerns that deeper contamination could move into the well's capture zone. The Guard agreed to the request. The two deepest screens will be installed in the existing well borehole; a second borehole will be advanced to set the two shallower screens. Newly installed monitoring wells are being developed and sampled.
- Because there were a lot of interferences observed in profile samples from WS4P-1, the Guard will use a different drill rig for the next location (BP-1).
- Installation of the remaining three proposed/approved locations in the Bourne Area is on hold, pending receipt of outstanding analytical results from other recent well installations.
- The Bourne Water District has turned on Supply Well 6 to test whether it can be put back on

line for water production. Pursuant to this action, a written request was sent to the Guard to complete sampling of 6 different well screens, twice over the period of two weeks. The first samples would need to be collected in 7 days. The Guard to discuss/notify the agencies regarding any agreement with the BWD.

- Early next week, the Corps will be redrafting a letter requesting the discontinuance of sampling VOCs and explosives for wells that have three rounds of data. Multiple letters may be sent as wells will reach the three round threshold at different times.
- Len Pinaud (MADEP) clarified that continued monitoring for VOCs in particular from
 monitoring and sentinel wells based on VOC detections that were not attributable to MMR,
 would be handled by the State Superfund Program as opposed to MADEP Water Supply.
 Bourne is likely exceeding monitoring requirements that are required by state regulation for
 public water supply. Whether the VOC detections would be pursued in the State Superfund
 Program would be a judgment call.

Site Wide Perchlorate Characterization Plan

Kim Harriz (AMEC) provided an overview of the scope of the Perchlorate Characterization Plan that was distributed on 6/10. Ten additional copies of Figure 1 from the Plan were distributed at the meeting.

- Figure 1 shows all monitoring wells for which the Guard has existing perchlorate data or is in the process of sampling for perchlorate analysis. These wells are coded with 5 colors as follows:
 - Orange circles/labels Wells that have data analyzed at an MDL of 0.35 ppb.
 - Black circles/labels Wells that have data analyzed at an MDL of 0.85 or 1.5 ppb and are not proposed for additional sampling.
 - Blue circles/labels Wells that have been scoped for perchlorate sampling and analysis in some other plan, but the data at a 0.35 ppb MDL had not been received as of 5/24
 - <u>Pink circles/labels</u> Wells that are proposed to be sampled and analyzed for perchlorate in this plan.
 - <u>Purple circles/labels</u> Wells that do not have any data for perchlorate and are not proposed to be sampled and analyzed for perchlorate at this time.
- A cross symbol on any well circle indicates that perchlorate data available for the corresponding well screen is above the EPA MMR Relevant Standard of 1.5 ug/L or is above the MADEP Drinking Water Advice of 1.0 ug/L (in the Town of Bourne only). Without a cross, orange circles could mean that either the perchlorate concentration is non detect or has a detection less than the applicable regulatory guideline. The highest concentration of perchlorate for each well with data at the MDL of 0.35 ug/L is listed in Table 1 of the Plan. Perchlorate results for the seven wells with black circles are all non detect.
- The Guard was proposing to sample more than 183 monitoring well screens pursuant to the Plan. These wells are prioritized for sampling as follows:
 - Priority 1: Monitoring wells upgradient of the Bourne Wellfield.
 - Priority 2: Monitoring wells/sentry wells within contributing areas of Supply Wells.
 - Priority 3: Monitoring wells on the base perimeter.
 - Priority 4: Monitoring wells in potential source areas and downgradient of the Central Impact Area prioritized for plume delineation.
 - Priority 5: Monitoring wells in the Central Impact Area of second priority for plume delineation.
- In the cover letter that was submitted with the Plan, the Guard requested authorization to begin sampling and analysis of the Priority 1-3 wells that were proposed to be sampled within 8 weeks of Plan approval, so that this sampling could be completed before the August

- LTGM round started. MADEP and EPA provided verbal approval to begin sampling the Priority 1-3 wells, as scoped by the Guard and forwarded confirmation emails on 6/14.
- Gina Tyo (Corps) suggested that on Figure 1 in the legend it be noted for the black well symbols that the results for these wells are non detect.
- Tina Dolen (IAGWSPO) requested that it be noted in the legend of Figure 1 that the MADEP Drinking Water Advice applied only to the Town of Bourne.
- Todd Borci (EPA) noted that on Figure 1, MW-291 should be MW-219; the D well was
 missing south of Snake Pond, and inquired regarding AFCEE wells that were sampled for
 perchlorate.
- Ken Gaynor (Jacobs) indicated that some additional AFCEE wells in the CS-10, GP-9, and LF-1 areas have been sampled for perchlorate; however, the results are not yet available.
 Ken Gaynor/Heather Sullivan to request all perchlorate sampling information from AFCEE.
- Marc Grant (AMEC) indicated that wells 03 and 03D in Bourne have not been sampled because they are lost.
- Todd Borci (EPA) noted that in the latest recent detection table, two Snake Pond drive points had detections of perchlorate and requested that the status of the biweekly surface water sampling be added to the 6/20 Tech meeting agenda.

Demo 1 Area Interim Actions

Dave Hill (IAGWSPO) and Mark Applebee (AMEC) led the discussion on the evaluation of the three options for Interim Actions. A handout of the evaluation of the three options and comments received from three IART team members were distributed.

- The three options being considered for an Interim Action at the Demo 1 Plume were Groundwater Pump and Treat at the toe of the plume, at Frank Perkins Road, and along the Eastern Plume Axis.
- Evaluation of the options was completed using five criteria:
 - 1) protection of the sole source aquifer: Does the option limit contamination of the sole source aquifer?
 - 2) time to implement: How long will it take to design the interim action (includes modeling, well placement, treatment system design, discharge system design/location)
 - 3) fit with existing Remedial Alternatives; How well would the option integrate with existing Remedial Alternatives? Don't want to pre-select the ultimate remedy or implement components that are not part of the selected Remedial Alternative.
 - 4) compliance with regulatory objectives (AO3=RRA and MCP=RAM) for "interim actions".
 - 5) does the interim action option reduce the overall timeframe to remediate the plume.
- Based on the evaluation, AMEC recommended containment of the downgradient migration of the plume at the toe to prevent any additional contamination of groundwater. This option was considered the best-fit solution with all criteria considered. Although the plume boundary was not yet defined, the preliminary design for the Interim Action (an estimated 9-12 month approval process) could be completed as the plume toe delineation proceeded. A system using this option was predicted to be on-line in approximately one year. The FS process was estimated to be completed in March 03, with a final treatment system on-line in approximately 3 years.
- Todd Borci (EPA) was concerned that the plume delineation would not proceed quickly enough to allow for effective containment of the plume at the toe as part of an Interim Action. In addition, this solution would extract only the lowest concentrations of contaminants in the plume. In the interim, higher concentrations of contaminants upgradient in the plume would continue to migrate both laterally and downgradient into the less contaminated portions of the aquifer. Mr. Borci favored an axial solution, pumping along the

axis of the plume in the areas of highest contaminant concentration. This would accomplish contaminant mass removal to reduce the migration of the highest concentrations of contamination downgradient and serve to limit the lateral plume migration. In his assessment, AMEC's evaluation did not seem to consider this solution objectively.

- Mark Applebee explained that the lateral extent of the plume is not thought to be increasing significantly. Pumping at the axis on the eastern half of the plume would not significantly reduce the time of plume cleanup, as the volume of water to extract would be the same regardless of the concentrations. In the interim, the downgradient edge of the plume would continue to advance into uncontaminated portions of the aquifer, increasing the volume of water that would be required to be extracted. In addition, the axial solution would be more complex to design and take longer to implement over other options (1.5 times as much time).
- Len Pinaud (MADEP) indicated that in terms of the MCP criteria for Release Abatement
 Measures (RAMs), the pumping at the toe appeared to be consistent with the requirement of
 limited scope and complexity and at the same time was protective of human health and the
 environment since plume migration was prevented.
- Mr. Pinaud also surmised that the IART team input, with one exception, favored pumping both at the toe and in the areas of highest concentration.
- EPA to review evaluation of Interim Action Options further. Guard to forward to agencies
 data from D1P-13, currently being drilled, and estimated overall remediation schedule.
 Decision on information/decision to be presented in the June IART meeting will need to be
 made at the June 20 IART dry run.

Miscellaneous

Textron has requested and been approved to do a Limited Removal Action (less than 20 cubic yards) of soil from a dry well at the J-3 Range.

2. SUMMARY OF DATA RECEIVED

Rush data are summarized in Table 3. These data are for analyses that are performed on a fast turnaround time, typically 1-5 days. Explosive analyses for monitoring wells, and explosive and volatile organic compound (VOC) analyses for groundwater profile samples, are conducted in this timeframe, as well as any analyses pursuant to a special request. The rush data are not validated, but are provided as an indication of the most recent preliminary results. Table 3 summarizes only detects, and does not show samples with non-detects.

The status of the explosive detections with respect to confirmation using Photo Diode Array (PDA) spectra is indicated in Table 3. PDA is a procedure that has been implemented for the explosive analysis, to reduce the likelihood of false positive identifications. Where the PDA status is "YES" in Table 3, the detected compound is verified as properly identified. Where the status is "NO", the identification of an explosive has been determined to be a false positive. Where the status is blank, PDA has not yet been used to evaluate the detection, or PDA is not applicable because the analyte is a VOC or perchlorate. Most explosive detections verified by PDA are confirmed to be present upon completion of validation. Table 3 includes the following detections:

• Groundwater samples from 58MW0001 (CS-19) had detections of RDX and HMX that were confirmed by PDA spectra. The results were similar to previous sampling rounds.

- Groundwater samples from 58MW0002 and 58MW0009E (CS-19) had detections of 2A-DNT, 4A-DNT, RDX and HMX that were confirmed by PDA spectra. The results were similar to previous sampling rounds.
- Groundwater samples from 58MW0011D (CS-19) and MW-160S (Demo Area 2) had detections of RDX that were confirmed by PDA spectra. The results were similar to previous sampling rounds.
- Groundwater samples from MW-114M2 (Demo Area 1) had detections of 4A-DNT, RDX, HMX, DNX, MNX, and TNX that were confirmed by PDA spectra. The results were similar to previous sampling rounds except that this is the first time the 8330NX analysis was used for analysis of RDX breakdown products.
- Groundwater samples from MW-19S (Demo Area 1) had detections of TNT, 2A-DNT, 4A-DNT, RDX, HMX, DNX, TNX, and MNX that were confirmed by PDA spectra. The results were similar to previous sampling rounds.
- Groundwater samples from MW-31S (Demo Area 1) had detections of TNT, 2,4-DNT, 2A-DNT, 4A-DNT, RDX, HMX, MNX, DNX and TNX that were confirmed by PDA spectra. The results were similar to previous sampling rounds.
- Groundwater samples from MW-80M3 (Far Field) had a detection of picric acid that was not confirmed by PDA spectra. Picric acid has never been a validated detection in this well.
- Groundwater samples from 97-2C and 02-12M1 (Bourne monitoring wells) had detections of chloromethane. This is the first time that chloromethane has been detected in these wells.
- Groundwater samples from 1-88B (Bourne test well) had detections of acetone and toluene.
 The results were similar to previous sampling results.
- Thirty-nine test wells, monitoring wells, spring and duplicate samples had detections of chloroform.
- Groundwater profile samples from MW-225 (D1P-13) had detections of 2,6-DNT (1 interval), nitroglycerin (1 interval), and picric acid (1 interval). None of the detections were confirmed by PDA spectra.

3. DELIVERABLES SUBMITTED

Draft Site-Wide Perchlorate Characterization Plan Weekly Progress Update for June 3 - 7, 2002

06/11/02 06/14/02

4. SCHEDULED ACTIONS

Scheduled actions for the week of June 17 include complete well installation of MW-219 (WS4P-1) and MW-223 (CIAP-25) and complete drilling of MW-225 (D1P-13) and MW-227 (J3P-18).

5. SUMMARY OF ACTIVITIES FOR DEMO 1

Additional delineation of the downgradient portion of the groundwater plume will be conducted prior to finalizing the Feasibility Study for the Groundwater Operable Unit. Drilling of the next monitoring well D1P-13 (MW-225), located west of Pew Road, will be completed next week. Options for Interim Actions to address the Groundwater Operable Unit continue to be evaluated.

OGDEN_ID	LOCID OR WELL ID	DATE SAMPLED	SAMPLE TYPE	SBD	SED	BWTS	BWTE
J1.A.T14.004.3.0	J1.T14.004.R	06/13/2002	Crater Grab	1.00	1.25		
J1.A.T14.005.3.0	J1.T14.005.R	06/13/2002	Crater Grab	1.50	1.75		
J1.A.T14.006.3.0	J1.T14.006.R	06/13/2002	Crater Grab	0.25	0.50		
J1.A.T14.006.3.D	J1.T14.006.R	06/13/2002	Crater Grab	0.25	0.50		
J2.A.T10.013.3.0	J2.T10.013.O	06/07/2002	Crater Grab	0.00	0.25		
J2.A.T15A.001.3.0	J2.T15A.001.O	06/07/2002	Crater Grab	0.00	0.25		
J2.A.T15A.002.3.0	J2.T15A.002.O	06/07/2002	Crater Grab	0.00	0.25		
J2.A.T15A.003.3.0	J2.T15A.003.O	06/07/2002	Crater Grab	0.00	0.25		
J2.A.T15A.004.3.0	J2.T15A.004.O	06/07/2002	Crater Grab	0.00	0.25		
J2.A.T15A.005.3.0	J2.T15A.005.O	06/07/2002	Crater Grab	0.00	0.25		
J2.A.T15A.006.3.0	J2.T15A.006.O	06/07/2002	Crater Grab	0.00	0.25		
J2.A.T2A.007.3.0	J2.T2A.007.O/J2.T2A.	06/07/2002	Crater Grab	0.00	0.25		
J2.A.T2T.001.3.0	J2.T2T.001.O/J2.T2T.	06/07/2002	Crater Grab	0.00	0.25		
J2.A.T4.004.3.0	J2.T4.004.O	06/07/2002	Crater Grab	0.00	0.25		
J3.A.T10.001.3.0	J3.T10.001.R	06/13/2002	Crater Grab	0.50	0.75		
J3.A.T10.002.3.0	J3.T10.002.R	06/13/2002	Crater Grab	0.50	0.75		
J3.A.T10.003.3.0	J3.T10.003.R	06/13/2002	Crater Grab	1.00	1.25		
J3.A.T12.001.3.0	J3.T12.001.R	06/13/2002	Crater Grab	0.75	1.00		
J3.A.T12.004.3.0	J3.T12.004.R	06/13/2002	Crater Grab	0.75	1.00		
J3.A.T6.001.3.0	J3.T6.001.R	06/13/2002	Crater Grab	0.75	1.00		
J3.A.T6.002.3.0	J3.T6.002.R	06/13/2002	Crater Grab	0.50	0.75		
J3.A.T6.003.3.0	J3.T6.003.R	06/13/2002	Crater Grab	0.33	0.58		
J3.A.T8.001.3.0	J3.T8.001.R	06/13/2002	Crater Grab	0.50	0.75		
J3.A.T8.002.3.0	J3.T8.002.R	06/13/2002	Crater Grab	0.50	0.75		
UT.A.001.3.0	UT.001.R	06/07/2002	Crater Grab	0.00	0.25		
UT.A.001.3.D	UT.001.R	06/07/2002	Crater Grab	0.00	0.25		
J1.A.T14.004.1.0	J1.T14.004.R	06/12/2002	Crater Grid	0.00	0.25		
J1.A.T14.004.2.0	J1.T14.004.R	06/13/2002	Crater Grid	1.00	1.25		
J1.A.T14.005.1.0	J1.T14.005.R	06/12/2002	Crater Grid	0.00	0.25		
J1.A.T14.005.2.0	J1.T14.005.R	06/13/2002	Crater Grid	1.50	1.75		
J1.A.T14.006.1.0	J1.T14.006.R	06/12/2002	Crater Grid	0.00	0.25		
J1.A.T14.006.1.D	J1.T14.006.R	06/12/2002	Crater Grid	0.00	0.25		
J1.A.T14.006.2.0	J1.T14.006.R	06/13/2002	Crater Grid	0.25	0.50		
J2.A.T10.013.2.0	J2.T10.013.O	06/07/2002	Crater Grid	0.00	0.25		
J2.A.T15A.001.2.0	J2.T15A.001.O	06/07/2002	Crater Grid	0.00	0.25		
J2.A.T15A.002.2.0	J2.T15A.002.O	06/07/2002	Crater Grid	0.00	0.25		
J2.A.T15A.003.2.0	J2.T15A.003.O	06/07/2002	Crater Grid	0.00	0.25		
J2.A.T15A.004.2.0	J2.T15A.004.O	06/07/2002	Crater Grid	0.00	0.25		
J2.A.T15A.005.2.0	J2.T15A.005.O	06/07/2002	Crater Grid	0.00	0.25		
J2.A.T15A.006.2.0	J2.T15A.006.O	06/07/2002	Crater Grid	0.00	0.25		
J2.A.T2A.007.2.0	J2.T2A.007.O/J2.T2A.	06/07/2002	Crater Grid	0.00	0.25		
J2.A.T2A.015.2.0	J2.T2A.015.O	06/07/2002	Crater Grid	0.00	0.25		
J2.A.T2A.015.3.0	J2.T2A.015.O	06/07/2002	Crater Grid	0.00	0.25		

Profiling methods include: Volatiles, Explosives and Perchlorate

Groundwater methods include: Volatiles, Semivolatiles, Explosives, Pesticides, Herbicides, Metals, and Wet Chemistry Other Sample Types methods are variable

SBD = Sample Begin Depth, measured in feet bgs

SED = Sample End Depth, measured in feet bgs

BWTS = Depth below water table, start depth, measured in feet

OGDEN_ID	LOCID OR WELL ID	DATE SAMPLED	SAMPLE TYPE	SBD	SED	BWTS	BWTE
J2.A.T4.004.2.0	J2.T4.004.O	06/07/2002	Crater Grid	0.00	0.25		
J3.A.T10.001.1.0	J3.T10.001.R	06/12/2002	Crater Grid	0.08	0.33		
J3.A.T10.001.2.0	J3.T10.001.R	06/13/2002	Crater Grid	0.50	0.75		
J3.A.T10.002.1.0	J3.T10.002.R	06/12/2002	Crater Grid	0.33	0.58		
J3.A.T10.002.2.0	J3.T10.002.R	06/13/2002	Crater Grid	0.50	0.75		
J3.A.T10.003.1.0	J3.T10.003.R	06/12/2002	Crater Grid	0.50	0.75		
J3.A.T10.003.2.0	J3.T10.003.R	06/13/2002	Crater Grid	1.00	1.25		
J3.A.T12.001.1.0	J3.T12.001.R	06/12/2002	Crater Grid	0.50	0.75		
J3.A.T12.001.2.0	J3.T12.001.R	06/13/2002	Crater Grid	0.75	1.00		
J3.A.T12.004.1.0	J3.T12.004.R	06/12/2002	Crater Grid	0.33	0.58		
J3.A.T12.004.2.0	J3.T12.004.R	06/13/2002	Crater Grid	0.75	1.00		
J3.A.T6.001.1.0	J3.T6.001.R	06/12/2002	Crater Grid	0.17	0.42		
J3.A.T6.001.2.0	J3.T6.001.R	06/13/2002	Crater Grid	0.75	1.00		
J3.A.T6.002.1.0	J3.T6.002.R	06/12/2002	Crater Grid	0.33	0.58		
J3.A.T6.002.2.0	J3.T6.002.R	06/13/2002	Crater Grid	0.50	0.75		
J3.A.T6.003.1.0	J3.T6.003.R	06/12/2002	Crater Grid	0.33	0.58		
J3.A.T6.003.2.0	J3.T6.003.R	06/13/2002	Crater Grid	0.33	0.58		
J3.A.T8.001.1.0	J3.T8.001.R	06/12/2002	Crater Grid	0.50	0.75		
J3.A.T8.001.2.0	J3.T8.001.R	06/13/2002	Crater Grid	0.50	0.75		
J3.A.T8.002.1.0	J3.T8.002.R	06/12/2002	Crater Grid	0.33	0.58		
J3.A.T8.002.2.0	J3.T8.002.R	06/13/2002	Crater Grid	0.50	0.75		
UT.A.001.2.0	UT.001.R	06/07/2002	Crater Grid	0.00	0.25		
27MW0108AE	FIELDQC	06/10/2002	FIELDQC	0.00	0.00		
4036000-01GT	FIELDQC	06/12/2002	FIELDQC	0.00	0.00		
97-1E	FIELDQC	06/08/2002	FIELDQC	0.00	0.00		
97-2BT	FIELDQC	06/11/2002	FIELDQC	0.00	0.00		
G225DAE	FIELDQC	06/13/2002	FIELDQC	0.00	0.00		
G225DBE	FIELDQC	06/13/2002	FIELDQC	0.00	0.00		
HC11A1AAE	FIELDQC	06/10/2002	FIELDQC	0.00	0.00		
HC186A1AAE	FIELDQC	06/11/2002	FIELDQC	0.00	0.00		
HC188B1AAE	FIELDQC	06/12/2002	FIELDQC	0.00	0.00		
HC190B1AAE	FIELDQC	06/13/2002	FIELDQC	0.00	0.00		
LRMW0003T	FIELDQC	06/10/2002	FIELDQC	0.00	0.00		
M-1DAE	FIELDQC	06/14/2002	FIELDQC	0.00	0.00		
M-1DAT	FIELDQC	06/14/2002	FIELDQC	0.00	0.00		
M-2CAE	FIELDQC	06/13/2002	FIELDQC	0.00	0.00		
M-3DAE	FIELDQC	06/11/2002	FIELDQC	0.00	0.00		
W02-12M2E	FIELDQC	06/12/2002	FIELDQC	0.00	0.00		
W02-13M3T	FIELDQC	06/13/2002	FIELDQC	0.00	0.00		
W213M2T	FIELDQC	06/08/2002	FIELDQC	0.00	0.00		
W81M1T	FIELDQC	06/09/2002	FIELDQC	0.00	0.00		
27MW0108A	27MW0108A	06/10/2002	GROUNDWATER	222.00	227.00	80.70	85.70
4036000-01G	4036000-01G	06/12/2002	GROUNDWATER				
4036000-03G	4036000-03G	06/13/2002	GROUNDWATER				

Profiling methods include: Volatiles, Explosives and Perchlorate

Groundwater methods include: Volatiles, Semivolatiles, Explosives, Pesticides, Herbicides, Metals, and Wet Chemistry Other Sample Types methods are variable

SBD = Sample Begin Depth, measured in feet bgs

SED = Sample End Depth, measured in feet bgs

BWTS = Depth below water table, start depth, measured in feet

OGDEN_ID	LOCID OR WELL ID	DATE SAMPLED	SAMPLE TYPE	SBD	SED	BWTS	BWTE
4036000-04G	4036000-04G	06/13/2002	GROUNDWATER				
4036000-06G	4036000-06G	06/12/2002	GROUNDWATER				
90SNP0001	90SNP0001	06/14/2002	GROUNDWATER				
90SNP0002	90SNP0002	06/14/2002	GROUNDWATER				
97-1	97-1	06/08/2002	GROUNDWATER	83.00	93.00	62.00	72.00
97-2	97-2	06/08/2002	GROUNDWATER	75.00	85.00	53.00	63.00
97-2BA	97-2B	06/13/2002	GROUNDWATER		121.70		75.40
97-2CA	97-2C	06/11/2002	GROUNDWATER		132.00		68.00
97-2CD	97-2C	06/11/2002	GROUNDWATER		132.00		68.00
97-2DA	97-2D	06/13/2002	GROUNDWATER		115.40		82.90
97-2EA	97-2E	06/13/2002	GROUNDWATER		94.50		49.80
97-2FA	97-2F	06/13/2002	GROUNDWATER		120.00		76.70
97-2GA	97-2G	06/11/2002	GROUNDWATER		126.80		73.70
97-3	97-3	06/08/2002	GROUNDWATER	75.00	85.00	36.00	46.00
97-5	97-5	06/08/2002	GROUNDWATER	84.00	94.00	76.00	86.00
LRMW0003	LRMW0003	06/10/2002	GROUNDWATER			74.75	84.75
LRMW0003D	LRMW0003	06/10/2002	GROUNDWATER			74.75	84.75
M-1BAA	M-1	06/14/2002	GROUNDWATER		45.00		10.00
M-1CAA	M-1	06/14/2002	GROUNDWATER		55.00		10.00
M-1DAA	M-1	06/14/2002	GROUNDWATER		65.00		10.00
M-2BAA	M-2	06/14/2002	GROUNDWATER		65.00		1.50
M-2CAA	M-2	06/14/2002	GROUNDWATER		75.00		1.50
M-2DAA	M-2	06/13/2002	GROUNDWATER		85.00		21.50
M-3BAA	M-3	06/11/2002	GROUNDWATER		65.00		6.80
M-3CAA	M-3	06/11/2002	GROUNDWATER		75.00		16.80
M-3CAD	M-3	06/11/2002	GROUNDWATER		75.00		16.80
M-3DAA	M-3	06/11/2002	GROUNDWATER		85.00		26.80
M-4DAA	M-4	06/14/2002	GROUNDWATER		89.00		28.20
M-6BAA	M-6	06/14/2002	GROUNDWATER		59.00		31.70
M-6CAA	M-6	06/14/2002	GROUNDWATER		69.00		31.70
M-6DAA	M-6	06/14/2002	GROUNDWATER		79.00		31.70
RS0011OSNK	RS0011	06/10/2002	GROUNDWATER				
SPRING1A	SPRING1	06/10/2002	GROUNDWATER				
TW1-88AA	1-88	06/13/2002	GROUNDWATER				67.40
TW1-88AD	1-88	06/13/2002	GROUNDWATER				67.40
W02-12M1A	02-12	06/12/2002	GROUNDWATER	109.00	119.00	58.35	68.35
W02-12M2A	02-12	06/12/2002	GROUNDWATER	94.00	104.00	43.21	53.21
W02-12M3A	02-12	06/13/2002	GROUNDWATER	68.00	78.00	28.30	38.30
W02-12M3D	02-12	06/13/2002	GROUNDWATER	68.00	78.00	28.30	38.30
W02-13M1A	02-13	06/12/2002	GROUNDWATER	98.00	108.00	58.33	68.33
W02-13M2A	02-13	06/12/2002	GROUNDWATER	83.00	93.00	44.20	54.20
W02-13M3A	02-13	06/12/2002	GROUNDWATER	68.00			38.30
W02-13M3D	02-13	06/12/2002	GROUNDWATER	68.00			38.30
W05DDA	MW-05	06/12/2002	GROUNDWATER	335.00	340.00	223.00	228.00

Profiling methods include: Volatiles, Explosives and Perchlorate

Groundwater methods include: Volatiles, Semivolatiles, Explosives, Pesticides, Herbicides, Metals, and Wet Chemistry Other Sample Types methods are variable

SBD = Sample Begin Depth, measured in feet bgs

SED = Sample End Depth, measured in feet bgs

BWTS = Depth below water table, start depth, measured in feet

OGDEN_ID	LOCID OR WELL ID	DATE SAMPLED	SAMPLE TYPE	SBD	SED	BWTS	BWTE
W109SSA	MW-109	06/10/2002	GROUNDWATER	89.00	99.00	1.00	11.00
W111M2A	MW-111	06/11/2002	GROUNDWATER	182.00	192.00	50.00	60.00
W141M1A	MW-141	06/12/2002	GROUNDWATER	190.00	200.00	62.00	72.00
W141SSA	MW-141	06/12/2002	GROUNDWATER	128.00	138.00	0.00	10.00
W159M1A	MW-159	06/13/2002	GROUNDWATER	178.50	188.50	53.00	63.00
W159SSA	MW-159	06/13/2002	GROUNDWATER	126.30	136.30	1.00	11.00
W213M1A	MW-213	06/08/2002	GROUNDWATER	133.00	143.00	85.01	95.01
W213M2A	MW-213	06/08/2002	GROUNDWATER	89.00	99.00	41.15	51.15
W213M3A	MW-213	06/08/2002	GROUNDWATER	77.00	82.00	98.60	108.60
W217M1A	MW-217	06/11/2002	GROUNDWATER	148.00	153.00	143.00	148.00
W217M2A	MW-217	06/11/2002	GROUNDWATER	138.00	143.00	133.00	138.00
W217M3A	MW-217	06/11/2002	GROUNDWATER	101.00	106.00	96.00	101.00
W217M4A	MW-217	06/11/2002	GROUNDWATER	68.00	73.00	63.00	68.00
W218M1A	MW-218	06/11/2002	GROUNDWATER	128.00	133.00	123.00	128.00
W218M2A	MW-218	06/10/2002	GROUNDWATER	98.00	103.00	93.00	98.00
W218M3A	MW-218	06/10/2002	GROUNDWATER	78.00	83.00	73.00	78.00
W21M3A	MW-21	06/10/2002	GROUNDWATER	196.00	206.00	28.00	38.00
W23M1A	MW-23	06/10/2002	GROUNDWATER	225.00	235.00	103.00	113.00
W23M1D	MW-23	06/10/2002	GROUNDWATER	225.00	235.00	103.00	113.00
W37M1A	MW-37	06/11/2002	GROUNDWATER	181.00	191.00	62.00	72.00
W37M2A	MW-37	06/11/2002	GROUNDWATER	145.00	155.00	26.00	36.00
W37M2D	MW-37	06/11/2002	GROUNDWATER	145.00	155.00	26.00	36.00
W38M3A	MW-38	06/11/2002	GROUNDWATER	170.00	180.00	52.00	62.00
W38M4A	MW-38	06/11/2002	GROUNDWATER	132.00	142.00	14.00	24.00
W40M1A	MW-40	06/13/2002	GROUNDWATER	132.50	142.50	13.00	23.00
W80DDA	MW-80	06/09/2002	GROUNDWATER	158.00	168.00	114.00	124.00
W80M1A	MW-80	06/08/2002	GROUNDWATER	130.00	140.00	86.00	96.00
W80M1D	MW-80	06/08/2002	GROUNDWATER	130.00	140.00	86.00	96.00
W80M2A	MW-80	06/08/2002	GROUNDWATER	100.00	110.00	56.00	66.00
W80M3A	MW-80	06/09/2002	GROUNDWATER	70.00	80.00	26.00	36.00
W81DDA	MW-81	06/09/2002	GROUNDWATER	184.00	194.00	156.00	166.00
W81M1A	MW-81	06/09/2002	GROUNDWATER	128.00	138.00	100.00	110.00
W81M2A	MW-81	06/09/2002	GROUNDWATER	83.00	93.00	55.00	65.00
W81M3A	MW-81	06/09/2002	GROUNDWATER	53.00	58.00	25.00	30.00
W81SSA	MW-81	06/09/2002	GROUNDWATER	25.00	35.00	0.00	10.00
W82DDA	MW-82	06/09/2002	GROUNDWATER	125.00	135.00	97.00	107.00
W82M1A	MW-82	06/09/2002	GROUNDWATER	104.00	114.00	76.00	86.00
W82M2A	MW-82	06/09/2002	GROUNDWATER	78.00	88.00	50.00	60.00
W82M3A	MW-82	06/09/2002	GROUNDWATER	54.00	64.00	26.00	36.00
W82SSA	MW-82	06/09/2002	GROUNDWATER	25.00	35.00	0.00	10.00
W87M1A	MW-87	06/13/2002	GROUNDWATER	137.20	194.00	62.00	72.00
W87M2A	MW-87	06/14/2002	GROUNDWATER	169.00	179.00	37.00	42.00
W87M2D	MW-87	06/14/2002	GROUNDWATER	169.00	179.00	37.00	42.00
W87M3A	MW-87	06/14/2002	GROUNDWATER	140.00	150.00	8.00	18.00

Profiling methods include: Volatiles, Explosives and Perchlorate

Groundwater methods include: Volatiles, Semivolatiles, Explosives, Pesticides, Herbicides, Metals, and Wet Chemistry Other Sample Types methods are variable

SBD = Sample Begin Depth, measured in feet bgs

SED = Sample End Depth, measured in feet bgs

BWTS = Depth below water table, start depth, measured in feet

OGDEN_ID	LOCID OR WELL ID	DATE SAMPLED	SAMPLE TYPE	SBD	SED	BWTS	BWTE
W89M1A	MW-89	06/14/2002	GROUNDWATER				
DW061202	GAC WATER	06/12/2002	IDW				
J1.M.T10.001.1.0	J1.T10.005.O	06/11/2002	Other*	1.75	2.00		
G225DAA	MW-225	06/12/2002	PROFILE	100.00	100.00	1.80	1.80
G225DBA	MW-225	06/13/2002	PROFILE	110.00	110.00	11.80	11.80
G225DCA	MW-225	06/13/2002	PROFILE	120.00	120.00	21.80	21.80
G225DDA	MW-225	06/13/2002	PROFILE	130.00	130.00	31.80	31.80
G225DEA	MW-225	06/13/2002	PROFILE	140.00	140.00	41.80	41.80
G225DFA	MW-225	06/13/2002	PROFILE	150.00	150.00	51.80	51.80
G225DFD	MW-225	06/13/2002	PROFILE	150.00	150.00	51.80	51.80
G225DHA	MW-225	06/13/2002	PROFILE	170.00	170.00	71.80	71.80
G225DIA	MW-225	06/13/2002	PROFILE	180.00	180.00	81.80	81.80
G227DAA	MW-227	06/14/2002	PROFILE	60.00	60.00	7.20	7.20
G227DBA	MW-227	06/14/2002	PROFILE	70.00	70.00	17.20	17.20
HC108A1AAA	108A	06/11/2002	SOIL GRID	0.00	0.50		
HC108B1AAA	108B	06/11/2002	SOIL GRID	0.00	0.50		
HC11A1AAA	11A	06/10/2002	SOIL GRID	0.00	0.50		
HC11B1AAA	11B	06/10/2002	SOIL GRID	0.00	0.50		
HC176A1AAA	176A	06/10/2002	SOIL GRID	0.00	0.50		
HC176B1AAA	176B	06/10/2002	SOIL GRID	0.00	0.50		
HC186A1AAA	186A	06/11/2002	SOIL GRID	0.00	0.50		
HC186A1AAD	186A	06/11/2002	SOIL GRID	0.00	0.50		
HC186B1AAA	186B	06/11/2002	SOIL GRID	0.00	0.50		
HC186C1AAA	186C	06/11/2002	SOIL GRID	0.00	0.50		
HC187A1AAA	186A	06/11/2002	SOIL GRID	0.00	0.50		
HC187B1AAA	186B	06/11/2002	SOIL GRID	0.00	0.50		
HC187C1AAA	186C	06/11/2002	SOIL GRID	0.00	0.50		
HC188A1AAA	188A	06/12/2002	SOIL GRID	0.00	0.50		
HC188B1AAA	188B	06/12/2002	SOIL GRID	0.00	0.50		
HC188C1AAA	188C	06/12/2002	SOIL GRID	0.00	0.50		
HC189A1AAA	189A	06/12/2002	SOIL GRID	0.00	0.50		
HC189A1AAD	189A	06/12/2002	SOIL GRID	0.00	0.50		
HC189B1AAA	189B	06/12/2002	SOIL GRID	0.00			
HC189C1AAA	189C	06/12/2002	SOIL GRID	0.00	0.50		
HC194A1AAA	194A	06/13/2002	SOIL GRID	0.00	0.50		
HC194B1AAA	194B	06/13/2002	SOIL GRID	0.00	0.50		
HC194C1AAA	194C	06/13/2002	SOIL GRID	0.00	0.50		
HC84A1AAA	84A	06/10/2002	SOIL GRID	0.00	0.50		
HC84B1AAA	84B	06/10/2002	SOIL GRID	0.00	0.50		
HC89A1AAA	89A	06/11/2002	SOIL GRID	0.00	0.50		
HC89B1AAA	89B	06/11/2002	SOIL GRID	0.00	0.50		
HD108A2AAA	108A	06/11/2002	SOIL GRID	0.00	0.50		
HD108A2AAD	108A	06/11/2002	SOIL GRID	0.00	0.50		
HD108A4AAA	108A	06/11/2002	SOIL GRID	0.00	0.50		

Profiling methods include: Volatiles, Explosives and Perchlorate

Groundwater methods include: Volatiles, Semivolatiles, Explosives, Pesticides, Herbicides, Metals, and Wet Chemistry Other Sample Types methods are variable

SBD = Sample Begin Depth, measured in feet bgs

SED = Sample End Depth, measured in feet bgs

BWTS = Depth below water table, start depth, measured in feet

OGDEN_ID	LOCID OR WELL ID	DATE SAMPLED	SAMPLE TYPE	SBD	SED	BWTS	BWTE
						DWIS	DWIL
HD108A6AAA HD108A8AAA	108A 108A	06/11/2002 06/11/2002	SOIL GRID SOIL GRID	0.00	0.50 0.50		
HD108A8AAA HD108B2AAA	108B	06/11/2002	SOIL GRID	0.00	0.50		
HD108B4AAA	108B	06/11/2002	SOIL GRID	0.00	0.50		
HD108B6AAA	108B	06/11/2002	SOIL GRID	0.00	0.50		
HD108B8AAA	108B	06/11/2002	SOIL GRID	0.00	0.50		
HD11A2AAA	11A	06/10/2002	SOIL GRID	0.00	0.50		
HD11A2AAA	11A	06/10/2002	SOIL GRID	0.00	0.50		
HD11A4AAA	11A	06/10/2002	SOIL GRID	0.00	0.50		
HD11A6AAA	11A	06/10/2002	SOIL GRID	0.00	0.50		
HD11A8AAA	11A	06/10/2002	SOIL GRID	0.00	0.50		
HD11B2AAA	11B	06/10/2002	SOIL GRID	0.00	0.50		
HD11B4AAA	11B	06/10/2002	SOIL GRID	0.00	0.50		
HD11B6AAA	11B	06/10/2002	SOIL GRID	0.00	0.50		
HD11B8AAA	11B	06/10/2002	SOIL GRID	0.00	0.50		
HD176A2AAA	176A	06/10/2002	SOIL GRID	0.00	0.50		
HD176A2AAD	176A	06/10/2002	SOIL GRID	0.00	0.50		
HD176A4AAA	176A	06/10/2002	SOIL GRID	0.00	0.50		
HD176A6AAA	176A	06/10/2002	SOIL GRID	0.00	0.50		
HD176A8AAA	176A	06/10/2002	SOIL GRID	0.00	0.50		
HD176B2AAA	176B	06/10/2002	SOIL GRID	0.00	0.50		
HD176B4AAA	176B	06/10/2002	SOIL GRID	0.00	0.50		
HD176B6AAA	176B	06/10/2002	SOIL GRID	0.00	0.50		
HD176B8AAA	176B	06/10/2002	SOIL GRID	0.00	0.50		
HD84A2AAA	84A	06/10/2002	SOIL GRID	0.00	0.50		
HD84A2AAD	84A	06/10/2002	SOIL GRID	0.00	0.50		
HD84A4AAA	84A	06/10/2002	SOIL GRID	0.00	0.50		
HD84A6AAA	84A	06/10/2002	SOIL GRID	0.00	0.50		
HD84A8AAA	84A	06/10/2002	SOIL GRID	0.00	0.50		
HD84B2AAA	84B	06/10/2002	SOIL GRID	0.00	0.50		
HD84B4AAA	84B	06/10/2002	SOIL GRID	0.00	0.50		
HD84B6AAA	84B	06/10/2002	SOIL GRID	0.00	0.50		
HD84B8AAA	84B	06/10/2002	SOIL GRID	0.00	0.50		
HD89A2AAA	89A	06/11/2002	SOIL GRID	0.00			
HD89A2AAD	89A	06/11/2002	SOIL GRID	0.00			
HD89A4AAA	89A	06/11/2002	SOIL GRID	0.00	0.50		
HD89A6AAA	89A	06/11/2002	SOIL GRID	0.00	0.50		
HD89A8AAA	89A	06/11/2002	SOIL GRID	0.00	0.50		
HD89B2AAA	89B	06/11/2002	SOIL GRID	0.00			
HD89B4AAA	89B	06/11/2002	SOIL GRID	0.00	0.50		
HD89B6AAA	89B	06/11/2002	SOIL GRID	0.00			
HD89B8AAA	89B	06/11/2002	SOIL GRID	0.00	0.50		
STL1EFFA1	STL1EFFA1	06/13/2002	STEP ANALYSIS	3.00	0.00		
STL1EFFA2	STL1EFFA2	06/13/2002	STEP ANALYSIS				
)	U	L 3 3 1 3 7 2 3 0 2	U . L. // .L I UIU				

Profiling methods include: Volatiles, Explosives and Perchlorate

Groundwater methods include: Volatiles, Semivolatiles, Explosives, Pesticides, Herbicides, Metals, and Wet Chemistry Other Sample Types methods are variable

SBD = Sample Begin Depth, measured in feet bgs

SED = Sample End Depth, measured in feet bgs

BWTS = Depth below water table, start depth, measured in feet

OGDEN_ID	LOCID OR WELL ID	DATE SAMPLED	SAMPLE TYPE	SBD	SED	BWTS	BWTE
STL1EFFA3	STL1EFFA3	06/13/2002	STEP ANALYSIS				
STL1EFFB1	STL1EFFB1	06/13/2002	STEP ANALYSIS				
STL1EFFB2	STL1EFFB2	06/13/2002	STEP ANALYSIS				
STL1EFFB3	STL1EFFB3	06/13/2002	STEP ANALYSIS				
STL1EFFS3	STL1EFFS3	06/13/2002	STEP ANALYSIS				
STPW1IINFS1	STPW1IINFS1	06/13/2002	STEP ANALYSIS				
STPW1INFS2	STPW1INFS2	06/13/2002	STEP ANALYSIS				
STPW1INFS3	STPW1INFS3	06/13/2002	STEP ANALYSIS				
STPW1INFSU	STPW1INFSU	06/13/2002	STEP ANALYSIS				
STPWINFS1	STPWINFS1	06/13/2002	STEP ANALYSIS				
J1.F.T10.XC1.1.0	J1 Target 10 Excavation	06/11/2002	Soil Grid	0.00	7.00		
J1.F.T10.XC1.2.0	J1 Target 10 Excavation	06/11/2002	Soil Grid	6.75	7.00		
J1.F.T10.XC1.3.0	J1 Target 10 Excavation	06/11/2002	Soil Grid	1.75	2.00		

Profiling methods include: Volatiles, Explosives and Perchlorate

Groundwater methods include: Volatiles, Semivolatiles, Explosives, Pesticides, Herbicides, Metals, and Wet Chemistry

Other Sample Types methods are variable

SBD = Sample Begin Depth, measured in feet bgs

SED = Sample End Depth, measured in feet bgs

BWTS = Depth below water table, start depth, measured in feet

OGDEN_ID	LOCID OR WELL ID	SAMPLED	SAMP_TYPE	SBD	SED	BWTS	BWTE	METHOD	OGDEN_ANALYTE	PDA
58MW0001	58MW001	05/31/2002	GROUNDWATER	121.80	126.80	3.60	8.60	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3	YES
58MW0001	58MW001	05/31/2002	GROUNDWATER	121.80	126.80	3.60	8.60	8330N	OCTAHYDRO-1,3,5,7-TETRANITE	YES
58MW0002	58MW0002	05/31/2002	GROUNDWATER	121.20	126.20	4.00	9.00	8330N	2-AMINO-4,6-DINITROTOLUENE	YES
58MW0002	58MW0002	05/31/2002	GROUNDWATER	121.20	126.20	4.00	9.00	8330N	4-AMINO-2,6-DINITROTOLUENE	YES
58MW0002	58MW0002	05/31/2002	GROUNDWATER	121.20	126.20	4.00	9.00	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3	YES
58MW0002	58MW0002	05/31/2002	GROUNDWATER	121.20	126.20	4.00	9.00	8330N	OCTAHYDRO-1,3,5,7-TETRANITE	YES
58MW0009E	58MW0009E	06/03/2002	GROUNDWATER	133.40	138.40	6.50	11.50	8330N	2-AMINO-4,6-DINITROTOLUENE	YES
58MW0009E	58MW0009E	06/03/2002	GROUNDWATER	133.40	138.40	6.50	11.50	8330N	4-AMINO-2,6-DINITROTOLUENE	YES
58MW0009E	58MW0009E	06/03/2002	GROUNDWATER	133.40	138.40	6.50	11.50	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3	YES
58MW0009E	58MW0009E	06/03/2002	GROUNDWATER	133.40	138.40	6.50	11.50	8330N	OCTAHYDRO-1,3,5,7-TETRANITE	YES
58MW0011D	58MW0011D	06/03/2002	GROUNDWATER	175.40	180.40	49.50	54.50	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3	YES
97-1	97-1	06/08/2002	GROUNDWATER	83.00	93.00	62.00	72.00	OC21V	CHLOROFORM	
97-2	97-2	06/08/2002	GROUNDWATER	75.00	85.00	53.00	63.00	OC21V	CHLOROFORM	
97-2BA	97-2B	06/13/2002	GROUNDWATER		121.70		75.40	OC21V	CHLOROFORM	
97-2CA	97-2C	06/11/2002	GROUNDWATER		132.00		68.00	OC21V	CHLOROFORM	
97-2CD	97-2C	06/11/2002	GROUNDWATER		132.00		68.00	OC21V	CHLOROFORM	
97-2CD	97-2C	06/11/2002	GROUNDWATER		132.00		68.00	OC21V	CHLOROMETHANE	
97-2FA	97-2F	06/13/2002	GROUNDWATER		120.00		76.70	OC21V	CHLOROFORM	
97-2GA	97-2G	06/11/2002	GROUNDWATER		126.80		73.70	OC21V	CHLOROFORM	
97-5	97-5	06/08/2002	GROUNDWATER	84.00	94.00	76.00	86.00	OC21V	CHLOROFORM	
M-3BAA	M-3	06/11/2002	GROUNDWATER		65.00		6.80	OC21V	CHLOROFORM	
M-3CAA	M-3	06/11/2002	GROUNDWATER		75.00		16.80	OC21V	CHLOROFORM	
M-3CAD	M-3	06/11/2002	GROUNDWATER		75.00		16.80	OC21V	CHLOROFORM	
M-3DAA	M-3	06/11/2002	GROUNDWATER		85.00		26.80	OC21V	CHLOROFORM	
SPRING1A	SPRING1	06/10/2002	GROUNDWATER						CHLOROFORM	
TW1-88BA	01-88	06/06/2002	GROUNDWATER		105.50		69.60	OC21V	ACETONE	
TW1-88BA	01-88	06/06/2002	GROUNDWATER		105.50			OC21V	CHLOROFORM	
TW1-88BA	01-88	06/06/2002	GROUNDWATER		105.50			OC21V	TOLUENE	
W02-12M1A	MW02-12	06/12/2002	GROUNDWATER	109.00	119.00	58.35	68.35	OC21V	ACETONE	
W02-12M1A	MW02-12	06/12/2002	GROUNDWATER	109.00	119.00	58.35	68.35	OC21V	CHLOROFORM	
W02-12M1A	MW02-12	06/12/2002	GROUNDWATER	109.00	119.00	58.35	68.35	OC21V	CHLOROMETHANE	

DATA REPORTED REFLECT CURRENT DATABASE FOR SAMPLES COLLECTED IN SPECIFIED TIMEFRAME. NOT ALL RESULTS ARE COMPLETE.

SBD = SAMPLE COLLECTION BEGIN DEPTH IN FEET BGS

SED = SAMPLE COLLECTION END DEPTH IN FEET BGS

BWTS = DEPTH BELOW WATER TABLE, START DEPTH, MEASURED IN FEET

BWTE = DEPTH BELOW WATER TABLE, END DEPTH, MEASURED IN FEET

PDA/YES = Photo Diode Array, Detect Confirmed

PDA/NO = Photo Diode Array, Detect Not Confirmed

^{* =} Interference in sample

OGDEN_ID	LOCID OR WELL ID	SAMPLED	SAMP_TYPE	SBD	SED	BWTS	BWTE	METHOD	OGDEN_ANALYTE	PDA
W02-12M2A	MW02-12	06/12/2002	GROUNDWATER	94.00	104.00	43.21	53.21	OC21V	CHLOROFORM	
W02-12M3A	MW02-12	06/13/2002	GROUNDWATER	68.00	78.00	28.30	38.30	OC21V	CHLOROFORM	
W02-12M3D	MW02-12	06/13/2002	GROUNDWATER	68.00	78.00	28.30	38.30	OC21V	CHLOROFORM	
W02-13M1A	MW02-13	06/12/2002	GROUNDWATER	98.00	108.00	58.33	68.33	OC21V	CHLOROFORM	
W02-13M2A	MW02-13	06/12/2002	GROUNDWATER	83.00	93.00	44.20	54.20	OC21V	CHLOROFORM	
W02-13M3A	MW02-13	06/12/2002	GROUNDWATER	68.00	78.00	28.30	38.30	OC21V	CHLOROFORM	
W02-13M3D	MW02-13	06/12/2002	GROUNDWATER	68.00	78.00	28.30	38.30	OC21V	CHLOROFORM	
W114M2A	MW-114	05/29/2002	GROUNDWATER	120.00	130.00	39.00	49.00	8330NX	4-AMINO-2,6-DINITROTOLUENE	YES
W114M2A	MW-114	05/29/2002	GROUNDWATER	120.00	130.00	39.00	49.00	8330NX	HEXAHYDRO-1,3,5-TRINITRO-1,	3YES
W114M2A	MW-114	05/29/2002	GROUNDWATER	120.00	130.00	39.00	49.00	8330NX	HEXAHYDRO-1,3,5-TRINITROSO	YES
W114M2A	MW-114	05/29/2002	GROUNDWATER	120.00	130.00	39.00	49.00	8330NX	HEXAHYDRO-1,3-DINITROSO-5-	MYES
W114M2A	MW-114	05/29/2002	GROUNDWATER	120.00	130.00	39.00	49.00	8330NX	HEXAHYDRO-1-MONONITROSO	YES
W114M2A	MW-114	05/29/2002	GROUNDWATER	120.00	130.00	39.00	49.00	8330NX	OCTAHYDRO-1,3,5,7-TETRANITI	RYES
W160SSA	MW-160	06/03/2002	GROUNDWATER	137.50	147.50	5.00	15.00	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,	3YES
W19SSA	MW-19	05/29/2002	GROUNDWATER	38.00	48.00	0.00	10.00	8330NX	2,4,6-TRINITROTOLUENE	YES
W19SSA	MW-19	05/29/2002	GROUNDWATER	38.00	48.00	0.00	10.00	8330NX	2-AMINO-4,6-DINITROTOLUENE	YES
W19SSA	MW-19	05/29/2002	GROUNDWATER	38.00	48.00	0.00	10.00	8330NX	4-AMINO-2,6-DINITROTOLUENE	YES
W19SSA	MW-19	05/29/2002	GROUNDWATER	38.00	48.00	0.00	10.00	8330NX	HEXAHYDRO-1,3,5-TRINITRO-1,	3YES
W19SSA	MW-19	05/29/2002	GROUNDWATER	38.00	48.00	0.00	10.00	8330NX	HEXAHYDRO-1,3,5-TRINITROSO	YES
W19SSA	MW-19	05/29/2002	GROUNDWATER	38.00	48.00	0.00	10.00	8330NX	HEXAHYDRO-1,3-DINITROSO-5-	MYES
W19SSA	MW-19	05/29/2002	GROUNDWATER	38.00	48.00	0.00	10.00	8330NX	HEXAHYDRO-1-MONONITROSO	YES
W19SSA	MW-19	05/29/2002	GROUNDWATER	38.00		0.00		8330NX	OCTAHYDRO-1,3,5,7-TETRANITI	RYES
W213M1A	MW-213	06/08/2002	GROUNDWATER	133.00	143.00	85.01		OC21V	CHLOROFORM	
W213M2A	MW-213	06/08/2002	GROUNDWATER	89.00	99.00	41.15	51.15	OC21V	CHLOROFORM	
W213M3A	MW-213	06/08/2002	GROUNDWATER	77.00	82.00	98.60	108.60	OC21V	CHLOROFORM	
W31SSA	MW-31	05/29/2002	GROUNDWATER	98.00	103.00	13.00	18.00	8330NX	2,4,6-TRINITROTOLUENE	YES
W31SSA	MW-31	05/29/2002	GROUNDWATER	98.00	103.00	13.00	18.00	8330NX	2,4-DINITROTOLUENE	YES
W31SSA	MW-31	05/29/2002	GROUNDWATER	98.00		13.00		8330NX	2-AMINO-4,6-DINITROTOLUENE	YES
W31SSA	MW-31	05/29/2002	GROUNDWATER	98.00		13.00		8330NX	4-AMINO-2,6-DINITROTOLUENE	YES
W31SSA	MW-31	05/29/2002	GROUNDWATER	98.00	103.00	13.00	18.00	8330NX	HEXAHYDRO-1,3,5-TRINITRO-1,	\$YES
W31SSA	MW-31	05/29/2002	GROUNDWATER	98.00	103.00	13.00	18.00	8330NX	HEXAHYDRO-1,3,5-TRINITROSC	YES

DATA REPORTED REFLECT CURRENT DATABASE FOR SAMPLES COLLECTED IN SPECIFIED TIMEFRAME. NOT ALL RESULTS ARE COMPLETE.

SBD = SAMPLE COLLECTION BEGIN DEPTH IN FEET BGS

SED = SAMPLE COLLECTION END DEPTH IN FEET BGS

BWTS = DEPTH BELOW WATER TABLE, START DEPTH, MEASURED IN FEET

BWTE = DEPTH BELOW WATER TABLE, END DEPTH, MEASURED IN FEET

PDA/YES = Photo Diode Array, Detect Confirmed

PDA/NO = Photo Diode Array, Detect Not Confirmed

^{* =} Interference in sample

OGDEN_ID	LOCID OR WELL ID	SAMPLED	SAMP_TYPE	SBD	SED	BWTS	BWTE	METHOD	OGDEN_ANALYTE	PDA
W31SSA	MW-31	05/29/2002	GROUNDWATER	98.00	103.00	13.00	18.00	8330NX	HEXAHYDRO-1,3-DINITROSO-5-I	MES
W31SSA	MW-31	05/29/2002	GROUNDWATER	98.00	103.00	13.00	18.00	8330NX	HEXAHYDRO-1-MONONITROSO-	YES
W31SSA	MW-31	05/29/2002	GROUNDWATER	98.00	103.00	13.00	18.00	8330NX	OCTAHYDRO-1,3,5,7-TETRANITE	YES
W80M1A	MW-80	06/08/2002	GROUNDWATER	130.00	140.00	86.00	96.00	OC21V	CHLOROFORM	
W80M1D	MW-80	06/08/2002	GROUNDWATER	130.00	140.00	86.00	96.00	OC21V	CHLOROFORM	
W80M2A	MW-80	06/08/2002	GROUNDWATER	100.00	110.00	56.00	66.00	OC21V	CHLOROFORM	
W80M3A	MW-80	06/09/2002	GROUNDWATER	70.00	80.00	26.00	36.00	8330N	PICRIC ACID	NO
W80M3A	MW-80	06/09/2002	GROUNDWATER	70.00	80.00	26.00	36.00	OC21V	CHLOROFORM	
W81DDA	MW-81	06/09/2002	GROUNDWATER	184.00	194.00	156.00		OC21V	CHLOROFORM	
W81M1A	MW-81	06/09/2002	GROUNDWATER	128.00	138.00	100.00	110.00	OC21V	CHLOROFORM	
W81M2A	MW-81	06/09/2002	GROUNDWATER	83.00	93.00	55.00	65.00	OC21V	CHLOROFORM	
W81M3A	MW-81	06/09/2002	GROUNDWATER	53.00	58.00	25.00	30.00	OC21V	CHLOROFORM	
W81SSA	MW-81	06/09/2002	GROUNDWATER	25.00	35.00	0.00	10.00	OC21V	CHLOROFORM	
W82DDA	MW-82	06/09/2002	GROUNDWATER	125.00	135.00	97.00	107.00	OC21V	CHLOROFORM	
W82M1A	MW-82	06/09/2002	GROUNDWATER	104.00	114.00	76.00	86.00	OC21V	CHLOROFORM	
W82M2A	MW-82	06/09/2002	GROUNDWATER	78.00	88.00	50.00	60.00	OC21V	CHLOROFORM	
W82M3A	MW-82	06/09/2002	GROUNDWATER	54.00	64.00	26.00	36.00	OC21V	CHLOROFORM	
W82SSA	MW-82	06/09/2002	GROUNDWATER	25.00	35.00	0.00	10.00	OC21V	CHLOROFORM	
G225DAA	MW-225	06/12/2002	PROFILE	100.00	100.00	1.80	1.80	8330N	2,6-DINITROTOLUENE	NO
G225DAA	MW-225	06/12/2002	PROFILE	100.00	100.00	1.80	1.80	8330N	NITROGLYCERIN	NO
G225DAA	MW-225	06/12/2002	PROFILE	100.00	100.00	1.80	1.80	8330N	PICRIC ACID	NO

DATA REPORTED REFLECT CURRENT DATABASE FOR SAMPLES COLLECTED IN SPECIFIED TIMEFRAME. NOT ALL RESULTS ARE COMPLETE.

SBD = SAMPLE COLLECTION BEGIN DEPTH IN FEET BGS

SED = SAMPLE COLLECTION END DEPTH IN FEET BGS

BWTS = DEPTH BELOW WATER TABLE, START DEPTH, MEASURED IN FEET

BWTE = DEPTH BELOW WATER TABLE, END DEPTH, MEASURED IN FEET

PDA/YES = Photo Diode Array, Detect Confirmed

PDA/NO = Photo Diode Array, Detect Not Confirmed

^{* =} Interference in sample