WEEKLY PROGRESS UPDATE FOR DECEMBER 16 – DECEMBER 20, 2002

EPA REGION I ADMINISTRATIVE ORDERS SDWA 1-97-1019 & 1-2000-0014 MASSACHUSETTS MILITARY RESERVATION TRAINING RANGE AND IMPACT AREA

The following summary of progress is for the period from December 16 through December 20, 2002.

1. SUMMARY OF ACTIONS TAKEN

Drilling progress as of December 20 is summarized in Table 1.

	Table 1. Drilling progre	ss as of Dece	mber 20, 2002	
Boring Number	Purpose of Boring/Well	Total Depth (ft bgs)	Saturated Depth (ft bwt)	Completed Well Screens (ft bgs)
MW-251	J-3 Range (J3P-26)	170	165	83-88; 98-103; 128-133
MW-252	Demo Area 1 (D1P-18)	250	136	
MW-253	J-1 Range (J1P-18)	317	188	
MW-254	K Range (KP-2)	130		
bgs = below	ground surface			

bgs = below ground surface bwt = below water table

Completed well installation of MW-251 (J3P-26), completed drilling of MW-253 (J1P-18), continued drilling of MW-252 (D1P-18), and commenced drilling of MW-254 (KP-2). Well development continued for newly installed wells.

Samples collected during the reporting period are summarized in Table 2. Groundwater profile samples were collected from MW-252, MW-253 and MW-254. Groundwater samples were collected from Bourne water supply and monitoring wells, as part of the December LTGM round, and from the Gallo Ice Rink well. Water samples were collected from the GAC treatment system. As part of the Munitions Survey Project, post-detonation BIP samples were collected from J-2 and U Ranges.

The following are the notes from the December 19, 2002 Technical Team meeting at the IAGWSPO:

Participants

Ben Gregson (IAGWSPO)
Bill Gallagher (IAGWSPO)
Jane Dolan (EPA-phone)
Len Pinaud (MADEP)
Frank Fedele (ACE)
Rob Foti (ACE)
Marc Grant (AMEC-phone)
John Rice (AMEC-phone)
Mike Goydas (Jacobs)
Leo Montroy (Tt-phone)

Tina Dolen (IAGWSPO)
Karen Wilson (IAGWSPO)
Meghan Cassidy (EPA-phone)
Mark Panni (MADEP-phone)
Ed Wise (ACE)
Sheila Holt (ACE-phone)
Kim Harriz (AMEC)
Herb Colby (AMEC-phone)
Larry Hudgins (Tetra Tech)
Susan Stewart (Tt-phone)

Dave Hill (IAGWSPO)
Todd Borci (EPA-phone)
Desiree Moyer (EPA-phone)
Gina Kaso (ACE)
Heather Sullivan (ACE-phone)
Darrin Smith (ACE)
Maria Pologruto (AMEC)
Dick Skryness (ECC)
John Webster (Tetra Tech)

Punchlist Items

- #3 <u>Determine status of sampling the Gallo Skating Rink well (Guard).</u> Attempt will be made to sample the well Friday, 12/20.
- #5 Provide data validation summary for MW-187, MW-188 and MW-215 (Corps). Additional data emailed last Friday, 12/13. Remaining set of data from MW-187 will be available shortly.
- #8 Provide ASR inquiry letter for Indiana Head NAVSTA and Tyndall AFB for EPA review (Corps). Draft letter to be forwarded to Jane Dolan today. Ms. Dolan noted that a 104e request may have been previously sent to Tyndall. Ms. Dolan to check further.
- #9 Provide EPA updated 104e documents table (Corps). Table to be emailed with draft letter (see #8).
- #10 Provide EPA/DEP with J-3 Range particle tracks (Corps). Particle tracks to be emailed to agencies today. Two sets of particle tracks were generated. The first set was generated with the older version of the subregional model. In this model run, particle tracks that are not captured in the FS-12 treatment system go under the pond and exit the footprint of the pond at the south end in the vicinity of the three proposed wells. The second set of particle tracks was generated with the recently updated version of the subregional model in which the transmissivity contrast between the pond bottom and aquifer had been increased. This adjustment was done to calibrate the modeled plume to intersect the middle screen of MW-171 (located on the spit) to match the field data. More of the particle tracks generated using this model were captured by the FS-12 treatment system. Some of the tracks continued under the pond exiting in an area east of the beaches. The agencies will review the particle tracks and discuss further at a later date.

MSP3 and Southeast Ranges Update

Rob Foti (ACE) provided an update on the MSP3 tasks.

<u>J-2 Range Polygons.</u> Crews completed Polygon 1 excavations this week. A final update of discoveries will likely be provided by 01/09/03. BIPs have been scheduled for Polygon 2 today. <u>U Range.</u> Multiple BIPs of 3.5-inch rockets with suspect fuzes are scheduled for today. Todd Borci requested that detail regarding unique demil operations be included in future BIP notifications. Geophysical and Schonstedt surveys of the range to be discussed in an after meeting today.

<u>Drilling</u> – J3P-26 (MW-251) was completed and developed by the drilling crew. Property owners to be notified within 48 hours of sampling event. Crews are currently drilling at J1P-18 and developing J3P-19.

CDC Update

Frank Fedele (ACE) gave a brief update on the status of the CDC.

- CDC operations were conducted on 12/03-12/06; 12/09-12/12.
- During these 8 days, 2688 items were detonated, including small arms, cartridge cases, flares, mortars, 20MM and 40MM projectiles and cartridge cases. Approximately 300 items were destroyed per day.
- Operations were discontinued this week due to a heart attack suffered by an individual on the crew. A replacement individual has not been found.
- The crew will demob over the next two weeks. Operations will continue beginning 01/07 through the end of January. Dependent on other scheduled events, there is a possibility that the operational schedule could be extended into February. However, extension of the schedule is completely conditional on the needs of the other facility for which the unit had previously been scheduled to provide service. Todd Borci requested the Guard ensure that all possible steps and coordination occur such that the entire stockpile of waste munitions can be disposed during the current mobilization of the CDC. Gina Kaso emphasized the Corps does not have control over whether or not the CDC can remain at MMR past the commitment date of 01/31.

Bourne Update

Bill Gallagher (IAGWSPO) summarized issues discussed in the Guard's 12/18 meeting with the Bourne Water District and Haley and Ward.

- Monthly sampling of the Bourne-area wells continues. Detects were noted in monitor wells
 1-88 and 02-13. There have been detects in these wells in the past.
- All comments on the Draft Bourne Perchlorate Response Plan have been received. Of the comments made, Leo Yuskus (Haley & Ward) stressed the following:
 - the BWD favored continued weekly sampling of certain specific wells that they would need information on in case an emergency required them to turn back on Bourne Supply Well 3 or 4. The BWD did not object to decreasing the sampling to monthly for other wells.
 - the BWD requested contingency wells between the Far Field Wells and sentinel wells.
 - the BWD did not feel that the southern and northern boundaries of the contamination in the wellfield were clearly defined. Therefore, related language in the Workplan was objectionable (the Guard had already previously agreed to change this language in the Final version of the Plan). The BWD would not pursue this issue further, preferring to leave this matter to be resolved at the agencies' discretion.
 - the BWD wanted further clarification on EPA Comment 21, which related to EPA's desire to have wells that were to be installed with AFCEE funding to follow IAGWSP protocols in an effort to maintain consistency. The greatest concern was that screen intervals greater than 10 feet were proposed to be used. The IAGWSPO feels that since these wells have a purpose other than defining nature and extent of contamination, that this should not be a requirement for these wells. The BWD agreed to work with the IAGWSP, but would not commit to installing only 10-foot screens.
- IART and MADEP comments on the Bourne Plan requested that the Guard look at the need for additional downgradient well(s). Particle backtracks from the USGS BHW wells showed that these are directly downgradient of the wells with the highest levels of perchlorate (02-13, MW-80) and therefore, in the Guard's opinion, no additional downgradient wells were needed. Todd Borci recommended the Guard provide forward particle tracks from some of the contaminated wells to the north and south, such as 02-13, to better demonstrate this point. Mr. Gallagher also noted that additional downgradient wells were not being sought by the BWD or the MADEP Water Supply Division. Mr. Borci noted the IAGWSPO did not necessarily have the same objectives as the BWD or MADEP Water Supply.

- Another comment on the Bourne Plan noted there was no clear trigger for installation of the contingency wells. The Guard agreed and will work on this part of the plan.
- Based on the IART's desire for a Bourne plume map and similar comment from MADEP on the plan, the Guard indicated that they would update the previous internal draft map with new data and provide to all parties for review. Mr. Borci requested a plume map be drafted consistent with the protocols used for the other IAGWSP plumes and then this map be provided to the agencies for review. Following incorporation of the agencies' comments, this map could then be provided for the BWD's review. The map should in some way account for the MADEP's Drinking Water Advice for the Town of Bourne.
- The Guard's Response to Comment letter for the Draft Bourne Perchlorate Response Plan will incorporate all agency comments and BWD comments. RCL to be submitted to all parties on 01/15. CRM to be scheduled for 01/29. Len Pinaud (MADEP) requested the BWD be notified of these dates.
- At Mr. Borci's request, all parties agreed to discuss new Bourne well locations in an after Tech meeting on 01/09. Draft plume map to be submitted to agencies as soon as available.

Training Ranges Update

- Bill Gallagher (IAGWSPO) noted that based on information provided in the Range Control log recently distributed by Nick Iaiennaro (ACE), another FSP scoping meeting for the Training Areas was warranted.
- Todd Borci noted that he was interested in detonation/demolition activities that occurred on roads of the western training areas. Were these sites already included in the Phase IIb? Mr. Gallagher noted that while not all places that activities were reported were sampled, for areas that were sampled, no residual explosive constituents were detected in soil. Mr. Borci requested copies of the data that Mr. Gallagher was basing his statements on regarding suspected detonation areas which have been sampled, noting that the previous sampling was based entirely upon site reconnaissance, and correct locations may be able to be located with greater precision with this new information. Therefore, Mr. Borci recommended the Training Ranges FSP be held a few weeks pending review of the Phase IIb Report. Len Pinaud concurred with this approach.
- Mr. Gallagher indicated the Guard was considering rethinking some of the analysis parameters.
- Mr. Borci indicated, in particular, he would like the Guard to look into where Tobbin Road was located. Ed Pesche and Ralph Turner were named as potential sources for this information.

Miscellaneous

- Gina Kaso (ACE) noted the additional MSP3 site investigations would commence beginning 01/06 and would include Ox Pond, NBC, the Former Demo Site, Gun and Mortar firing positions and the ASP. ROA's for the first four sites are in place; the Corps is working on the ROA for the ASP site.
- Ms. Kaso requested an after meeting be scheduled on 01/16 to discuss the OE Characterization Workplan; the Corps to develop an agenda. The J-3 Range Barrage and Hillside sites would be included under the OE Characterization Plan, since they are not known to be burial or disposal sites. Further discussion on this matter can be addressed at the 01/16 meeting. Mr. Borci noted his disagreement with inclusion of these sites in the OE Characterization scope of work as opposed to the MSP3 scope of work. EPA objected to the proposal for the J-3 Range Hillside and Barrage rocket sites for two reasons (1) the Corps requested EPA prioritize MSP3 sites early on in the 2002 calendar year, and these sites were higher in the priority list. This work was necessary to be completed in order to fold the findings in to the J3 range reports now being produced; and (2) that the MSP3

- scope of work is different (less extensive) than would have been generated for OE Characterization Work Plan work.
- Ms. Kaso noted the tentative schedule was for the Final Draft OE Characterization Workplan
 to be submitted in July 03. Additional information could be provided in the 01/16 meeting.
 Tetra Tech will be under contract to complete the fieldwork and report writing for this effort.

2. SUMMARY OF DATA RECEIVED

Rush data are summarized in Table 3. These data are for analyses that are performed on a fast turnaround time, typically 1-5 days. Explosive analyses for monitoring wells, and explosive and volatile organic compound (VOC) analyses for groundwater profile samples, are conducted in this timeframe, as well as any analyses pursuant to a special request. The rush data are not validated, but are provided as an indication of the most recent preliminary results. Table 3 summarizes only detects, and does not show samples with non-detects.

The status of the explosive detections with respect to confirmation using Photo Diode Array (PDA) spectra is indicated in Table 3. PDA is a procedure that has been implemented for the explosive analysis, to reduce the likelihood of false positive identifications. Where the PDA status is "YES" in Table 3, the detected compound is verified as properly identified. Where the status is "NO", the identification of an explosive has been determined to be a false positive. Where the status is blank, PDA has not yet been used to evaluate the detection, or PDA is not applicable because the analyte is a VOC or perchlorate. Most explosive detections verified by PDA are confirmed to be present upon completion of validation. Table 3 includes the following detections:

Table 3 includes detections from the following areas:

Bourne Area and upgradient

- Groundwater samples from 02-01M1; 02-02M2, M1; 02-03M3; 02-04M1; 02-05M1, M2; 02-07M3; 02-08M2, M3; 02-09M1; 02-12M3; 02-13M2; 1-88A, B; 97-5; MW-80M1, M2; MW-213M2, M3; and MW-233M3 had detections of perchlorate. The results were similar to the previous sampling rounds.
- Groundwater samples from MW-216S had detections of perchlorate and PETN. The PETN
 detection was not confirmed by PDA spectra. The results were similar to previous sampling
 rounds except that, PETN has never been a validated detection in this well.
- Groundwater samples from MW-226M1 had a detection of perchlorate. This is the first detection of perchlorate in this well.
- Groundwater samples from 00-2D had detections of 2,6-DNT, acetone and TCE. The detection of 2,6-DNT was not confirmed by PDA spectra. This is the first time acetone and TCE have been detected in this well.
- Groundwater samples from 00-7 had a detection of acetone. This is the first time acetone has been detected in this well.
- Groundwater samples from 02-04M3, M2, and M1 had detections of TCE. The results were similar to the previous sampling rounds.

- Groundwater samples from 02-05M2 had detections of acetone and toluene. This is the first time acetone and toluene have been detected in this well.
- Sixty-eight groundwater samples and duplicate samples had detections of chloroform.

Central Impact Area

• Groundwater samples from 58MW0018B and 58MW0020B had detections of RDX that were confirmed by PDA spectra. The results were similar to the previous sampling rounds.

Southeast Ranges

- Groundwater samples from MW-132S had detections of RDX, HMX, and PETN. The
 detections of RDX and HMX were confirmed by PDA spectra and the results were similar to
 the previous sampling rounds. The detection of PETN was not confirmed by PDA spectra
 and has never been a validated detection in this well.
- Profile samples from MW-253 (J1P-18) had detections of explosives and VOCs. None of the detections of explosives were confirmed by PDA spectra. Screens have not yet been selected for this location.

DELIVERABLES SUBMITTED

Draft IAGWSP Technical Team Memo 02-5, Site-Wide Perchlorate Characterization Report

12/20/02

3. SCHEDULED ACTIONS

Scheduled actions for the week of December 23 include weekly groundwater sampling at the Bourne water supply and monitoring wells.

4. SUMMARY OF ACTIVITIES FOR DEMO 1

Additional delineation of the downgradient portion of the groundwater plume is being conducted prior to finalizing the Feasibility Study for the Groundwater Operable Unit and as the Interim Action for groundwater remediation is being designed. Pumping and treating groundwater at the toe of the Demo 1 plume and at Frank Perkins Road has been selected as an Interim Action to address the Demo 1 Area Groundwater Operable Unit. A Rapid Response Action/Release Abatement Measure (RRA/RAM) is also being planned to address soil contamination at Demo 1. Drilling at D1P-18 and UXO clearance at D1P-19 continued this week.

OGDEN_ID	GIS_LOCID	LOGDATE	SAMP_TYPE	SBD	SED	BWTS	BWTE
G252DEE	FIELDQC	12/17/2002	FIELDQC	0	0		
G253DAE	FIELDQC	12/18/2002	FIELDQC	0	0		
G253DIE	FIELDQC	12/19/2002	FIELDQC	0	0		
M-1B-E	FIELDQC	12/18/2002	FIELDQC	0	0		
M-3D-E	FIELDQC	12/16/2002	FIELDQC	0	0		
M-3D-T	FIELDQC	12/16/2002	FIELDQC	0	0		
M-7B-E	FIELDQC	12/17/2002	FIELDQC	0	0		
W02-10M2T	FIELDQC	12/20/2002	FIELDQC	0	0		
W02-12M1T	FIELDQC	12/17/2002	FIELDQC	0	0		
W213M1T	FIELDQC	12/18/2002	FIELDQC	0	0		
WS-4AD-E	FIELDQC	12/19/2002	FIELDQC	0	0		
WS-4SD-T	FIELDQC	12/19/2002	FIELDQC	0	0		
4036000-01G-A	4036000-01G	12/17/2002	GROUNDWATER			6	12
4036000-03G-A	4036000-03G	12/17/2002	GROUNDWATER	50	60	6	12
4036000-04G-A	4036000-04G	12/17/2002	GROUNDWATER			6	12
4036000-06G-A	4036000-06G	12/17/2002	GROUNDWATER			6	12
GLSKRNK-A	GLSKRNK	12/20/2002	GROUNDWATER				
GLSKRNK-D	GLSKRNK	12/20/2002	GROUNDWATER				
M-1B-A	M-1	12/18/2002	GROUNDWATER		45		
M-1C-A	M-1	12/18/2002	GROUNDWATER		55		
M-1D-A	M-1	12/18/2002	GROUNDWATER		65		
M-1D-D	M-1	12/18/2002	GROUNDWATER		65		
M-2B-A	M-2	12/16/2002	GROUNDWATER		65		
M-2C-A	M-2	12/16/2002	GROUNDWATER		75		
M-2D-A	M-2	12/16/2002	GROUNDWATER		85		
M-3B-A	M-3	12/16/2002	GROUNDWATER		65		
M-3C-A	M-3	12/16/2002	GROUNDWATER		75		
M-3D-A	M-3	12/16/2002	GROUNDWATER		85		
M-4B-A	M-4	12/18/2002	GROUNDWATER		69		
M-4C-A	M-4	12/18/2002	GROUNDWATER		79		
M-4D-A	M-4	12/18/2002	GROUNDWATER		89		
M-5B-A	M-5	12/18/2002	GROUNDWATER		65		
M-5C-A	M-5	12/18/2002	GROUNDWATER		75		
M-5D-A	M-5	12/18/2002	GROUNDWATER		85		

Profiling methods include: Volatiles and Explosives

Groundwater methods include: Volatiles, Semivolatiles, Explosives,

Pesticides, Herbicides, Metals, and Wet Chemistry

Other Sample Types methods are variable

SBD = Sample Begin Depth, measured in feet bgs

SED = Sample End Depth, measured in feet bgs

BWTS = Depth below water table, start depth, measured in feet

OGDEN_ID	GIS_LOCID	LOGDATE	SAMP_TYPE	SBD	SED	BWTS	BWTE
M-6B-A	M-6	12/17/2002	GROUNDWATER		59		
M-6C-A	M-6	12/17/2002	GROUNDWATER		69		
M-6D-A	M-6	12/17/2002	GROUNDWATER		79		
M-7B-A	M-7	12/17/2002	GROUNDWATER		59		
M-7C-A	M-7	12/17/2002	GROUNDWATER		65		
M-7D-A	M-7	12/17/2002	GROUNDWATER		75		
MW00-4-A	00-4	12/17/2002	GROUNDWATER	64	70	38	44
TW00-1-A	00-1	12/19/2002	GROUNDWATER	64	70		
TW00-2D-A	00-2	12/19/2002	GROUNDWATER	71	77	43.95	49.95
TW00-5-A	00-5	12/16/2002	GROUNDWATER	50	56	15.5	21.5
TW00-7-A	00-7	12/16/2002	GROUNDWATER	57	63	25.5	31.5
TW01-1-A	01-1	12/16/2002	GROUNDWATER	62	67	55.21	60.21
TW1-88A-A	1-88	12/17/2002	GROUNDWATER		102.9	0	67.4
W02-03M1A	02-03	12/16/2002	GROUNDWATER	130	140	86.1	96.1
W02-03M2A	02-03	12/16/2002	GROUNDWATER	92	102	48.15	58.15
W02-03M3A	02-03	12/16/2002	GROUNDWATER	75	85	31.05	41.05
W02-04M1A	02-04	12/16/2002	GROUNDWATER	123	133	73.97	83.97
W02-04M2A	02-04	12/16/2002	GROUNDWATER	98	108	48.93	58.93
W02-04M3A	02-04	12/16/2002	GROUNDWATER	83	93	34.01	44.01
W02-08M1A	02-08	12/16/2002	GROUNDWATER	108	113	86.56	91.56
W02-08M2A	02-08	12/16/2002	GROUNDWATER	82	87	60.65	65.65
W02-08M3A	02-08	12/19/2002	GROUNDWATER	62	67	40.58	45.58
W02-09M1A	02-09	12/20/2002	GROUNDWATER	74	84	65.26	75.26
W02-10M1A	02-10	12/20/2002	GROUNDWATER	135	145	94	104
W02-10M2A	02-10	12/20/2002	GROUNDWATER	110	120	68.61	78.61
W02-10M3A	02-10	12/20/2002	GROUNDWATER	85	95	43.65	53.65
W02-10M3D	02-10	12/20/2002	GROUNDWATER	85	95	43.65	53.65
W02-12M1A	02-12	12/17/2002	GROUNDWATER	109	119	58.35	68.35
W02-12M2A	02-12	12/17/2002	GROUNDWATER	94	104	43.21	53.21
W02-12M3A	02-12	12/17/2002	GROUNDWATER	79	89	28.22	38.22
W02-12M3D	02-12	12/17/2002	GROUNDWATER	79	89	28.22	38.22
W02-13M1A	02-13	12/17/2002	GROUNDWATER	98	108	58.33	68.33
W02-13M2A	02-13	12/17/2002	GROUNDWATER	83	93	44.2	54.2
W02-13M3A	02-13	12/17/2002	GROUNDWATER	68	78	28.3	38.3

Profiling methods include: Volatiles and Explosives

Groundwater methods include: Volatiles, Semivolatiles, Explosives,

Pesticides, Herbicides, Metals, and Wet Chemistry

Other Sample Types methods are variable

SBD = Sample Begin Depth, measured in feet bgs

SED = Sample End Depth, measured in feet bgs

BWTS = Depth below water table, start depth, measured in feet

OGDEN_ID	GIS_LOCID	LOGDATE	SAMP_TYPE	SBD	SED	BWTS	BWTE
W213M1A	MW-213	12/18/2002	GROUNDWATER	133	143	85.01	95.01
W213M2A	MW-213	12/18/2002	GROUNDWATER	89	99	41.15	51.15
W213M3A	MW-213	12/18/2002	GROUNDWATER	77	82	29.38	34.38
W216M1A	MW-216	12/18/2002	GROUNDWATER	253	263	51.19	61.19
W216M2A	MW-216	12/18/2002	GROUNDWATER	236	246	34.17	44.17
W216M2D	MW-216	12/18/2002	GROUNDWATER	236	246	34.17	44.17
W216SSA	MW-216	12/18/2002	GROUNDWATER	199	209	0	7.13
W219M1A	MW-219	12/17/2002	GROUNDWATER	357	367	178	188
W219M2A	MW-219	12/17/2002	GROUNDWATER	332	342	153.05	163.05
W219M3A	MW-219	12/17/2002	GROUNDWATER	315	325	135.8	145.8
W219M4A	MW-219	12/17/2002	GROUNDWATER	225	235	45.7	55.7
W226M1A	MW-226	12/19/2002	GROUNDWATER	285	295	172	182
W226M2A	MW-226	12/19/2002	GROUNDWATER	175	185	61.7	71.7
W226M3A	MW-226	12/19/2002	GROUNDWATER	135	145	21.53	31.53
W233M1A	MW-233	12/19/2002	GROUNDWATER	356	366	157.8	167.8
W233M2A	MW-233	12/19/2002	GROUNDWATER	331	341	132.8	142.8
W233M3A	MW-233	12/19/2002	GROUNDWATER	231	241	32.8	42.8
W82DDA	MW-82	12/18/2002	GROUNDWATER	125	135	97	107
W82M2A	MW-82	12/18/2002	GROUNDWATER	78	88	50	60
W82M3A	MW-82	12/18/2002	GROUNDWATER	54	64	26	36
WS-4AD-A	WS-4A	12/19/2002	GROUNDWATER	218	228	148.5	158.5
WS-4AD-D	WS-4A	12/19/2002	GROUNDWATER	155	165	85.5	95.5
WS-4AS-A	WS-4A	12/19/2002	GROUNDWATER	155	165	85.5	95.5
XXM971-A	97-1	12/20/2002	GROUNDWATER	83	93	62	72
XXM972-A	97-2	12/20/2002	GROUNDWATER	75	85	53	63
XXM975-A	97-5	12/20/2002	GROUNDWATER	84	94	76	86
DW121702-NV	GAC WATER	12/17/2002	IDW				
G252DEA	MW-252	12/17/2002	PROFILE	160	160	46.5	46.5
G252DFA	MW-252	12/17/2002	PROFILE	170	170	56.5	56.5
G252DGA	MW-252	12/18/2002	PROFILE	180	180	66.5	66.5
G252DHA	MW-252	12/18/2002	PROFILE	190	190	76.5	76.5
G252DIA	MW-252	12/19/2002	PROFILE	200	200	86.5	86.5
G252DJA	MW-252	12/19/2002	PROFILE	210	210	96.5	96.5
G252DKA	MW-252	12/19/2002	PROFILE	220	220	106.5	106.5

Profiling methods include: Volatiles and Explosives

Groundwater methods include: Volatiles, Semivolatiles, Explosives,

Pesticides, Herbicides, Metals, and Wet Chemistry

Other Sample Types methods are variable

SBD = Sample Begin Depth, measured in feet bgs

SED = Sample End Depth, measured in feet bgs

BWTS = Depth below water table, start depth, measured in feet

OGDEN_ID	GIS_LOCID	LOGDATE	SAMP_TYPE	SBD	SED	BWTS	BWTE
G252DLA	MW-252	12/19/2002	PROFILE	230	230	116.5	116.5
G252DMA	MW-252	12/19/2002	PROFILE	240	240	126.5	126.5
G252DNA	MW-252	12/19/2002	PROFILE	250	250	136.5	136.5
G253DAA	MW-253	12/18/2002	PROFILE	135	135	5.6	5.6
G253DBA	MW-253	12/18/2002	PROFILE	140	140	10.6	10.6
G253DCA	MW-253	12/18/2002	PROFILE	150	150	20.6	20.6
G253DDA	MW-253	12/18/2002	PROFILE	160	160	30.6	30.6
G253DEA	MW-253	12/18/2002	PROFILE	170	170	40.6	40.6
G253DFA	MW-253	12/18/2002	PROFILE	180	180	50.6	50.6
G253DFD	MW-253	12/18/2002	PROFILE	180	180	50.6	50.6
G253DGA	MW-253	12/18/2002	PROFILE	190	190	60.6	60.6
G253DHA	MW-253	12/18/2002	PROFILE	200	200	70.6	70.6
G253DIA	MW-253	12/19/2002	PROFILE	210	210	80.6	80.6
G253DJA	MW-253	12/19/2002	PROFILE	220	220	90.6	90.6
G253DKA	MW-253	12/19/2002	PROFILE	230	230	100.6	100.6
G253DLA	MW-253	12/19/2002	PROFILE	240	240	110.6	110.6
G253DMA	MW-253	12/19/2002	PROFILE	250	250	120.6	120.6
G253DNA	MW-253	12/19/2002	PROFILE	260	260	130.6	130.6
G253DOA	MW-253	12/19/2002	PROFILE	270	270	140.6	140.6
G253DPA	MW-253	12/19/2002	PROFILE	280	280	150.6	150.6
G253DQA	MW-253	12/19/2002	PROFILE	290	290	160.6	160.6
G253DRA	MW-253	12/19/2002	PROFILE	300	300	170.6	170.6
G253DSA	MW-253	12/19/2002	PROFILE	310	310	180.6	180.6
G253DTA	MW-253	12/19/2002	PROFILE	317	317	187.6	187.6
G254DAA	MW-254	12/19/2002	PROFILE	70	70		
G254DBA	MW-254	12/19/2002	PROFILE	80	80		
G254DCA	MW-254	12/19/2002	PROFILE	90	90		
G254DCD	MW-254	12/19/2002	PROFILE	90	90		
G254DDA	MW-254	12/19/2002	PROFILE	100	100		
G254DEA	MW-254	12/19/2002	PROFILE	110	110		
G254DFA	MW-254	12/19/2002	PROFILE	120	120		
J2.A.T1A.021.1.	0 J2.T1A.021.R	12/18/2002	CRATER GRID	0	0.17		
J2.A.T1A.021.1.	J2.T1A.021.R	12/18/2002	CRATER GRID	0	0.17		
J2.A.T1A.021.2.	0 J2.T1A.021.R	12/19/2002	CRATER GRID	0	0.17		

Profiling methods include: Volatiles and Explosives

Groundwater methods include: Volatiles, Semivolatiles, Explosives,

Pesticides, Herbicides, Metals, and Wet Chemistry

Other Sample Types methods are variable

SBD = Sample Begin Depth, measured in feet bgs

SED = Sample End Depth, measured in feet bgs

BWTS = Depth below water table, start depth, measured in feet

OGDEN_ID GIS_LOCID	LOGDATE	SAMP_TYPE	SBD	SED	BWTS	BWTE
J2.A.T1A.021.3.0 J2.T1A.021.R	12/19/2002	CRATER GRAB	0	0.17		
J2.A.T1A.022.1.0 J2.T1A.022.R	12/18/2002	CRATER GRID	0	0.17		
J2.A.T1A.022.2.0 J2.T1A.022.R	12/18/2002	CRATER GRID	0	0.17		
J2.A.T1A.022.3.0 J2.T1A.022.R	12/19/2002	CRATER GRAB	0	0.17		
J2.A.T1A.022.3. J2.T1A.022.R	12/19/2002	CRATER GRAB	0	0.17		
J2.F.T1B.XC1.1. J2 TARGET 1B	12/19/2002	SOIL	0	3.25		
J2.F.T1B.XC1.2. J2 TARGET 1B	12/19/2002	SOIL	3.25	3.5		
J2.F.T1B.XC1.3. J2 TARGET 1B	12/19/2002	SOIL	1	1.25		
J2.F.T1C.XC1.1. J2 TARGET 1C	12/19/2002	SOIL	0	3		
J2.F.T1C.XC1.2. J2 TARGET 1C	12/19/2002	SOIL	3	3.25		
J2.F.T1C.XC1.2. J2 TARGET 1C	12/19/2002	SOIL	3	3.25		
UR.A.L1A.1.0	12/18/2002	CRATER GRID	0	0.17		
UR.A.L1A.2.0	12/19/2002	CRATER GRID	0	0.17		
UR.A.L1A.3.0	12/19/2002	CRATER GRAB	0	0.17		
UR.A.L1B.1.0	12/18/2002	CRATER GRID	0	0.17		
UR.A.L1B.2.0	12/19/2002	CRATER GRID	0	0.17		
UR.A.L1B.3.0	12/19/2002	CRATER GRAB	0	0.17		
UR.A.L1C.1.0	12/18/2002	CRATER GRID	0	0.17		
UR.A.L1C.2.0	12/19/2002	CRATER GRID	0	0.17		
UR.A.L1C.3.0	12/19/2002	CRATER GRAB	0	0.17		
UR.A.L1D.1.0	12/18/2002	CRATER GRID	0	0.17		
UR.A.L1D.1.D	12/18/2002	CRATER GRID	0	0.17		
UR.A.L1D.2.0	12/19/2002	CRATER GRID	0	0.17		
UR.A.L1D.3.0	12/19/2002	CRATER GRAB	0	0.17		
UR.A.L1E.1.0	12/18/2002	CRATER GRID	0	0.17		
UR.A.L1E.2.0	12/19/2002	CRATER GRID	0	0.17		
UR.A.L1E.3.0	12/19/2002	CRATER GRAB	0	0.17		
UR.A.L1F.1.0	12/18/2002	CRATER GRID	0	0.17		
UR.A.L1F.2.0	12/19/2002	CRATER GRID	0	0.17		
UR.A.L1F.3.0	12/19/2002	CRATER GRAB	0	0.17		
UR.A.L1G.1.0	12/18/2002	CRATER GRID	0	0.17		
UR.A.L1G.2.0	12/19/2002	CRATER GRID	0	0.17		
UR.A.L1G.3.0	12/19/2002	CRATER GRAB	0	0.17		
UR.A.L1H.1.0	12/18/2002	CRATER GRID	0	0.17		

Profiling methods include: Volatiles and Explosives

Groundwater methods include: Volatiles, Semivolatiles, Explosives,

Pesticides, Herbicides, Metals, and Wet Chemistry

Other Sample Types methods are variable

SBD = Sample Begin Depth, measured in feet bgs

SED = Sample End Depth, measured in feet bgs

BWTS = Depth below water table, start depth, measured in feet

OGDEN_ID	GIS_LOCID	LOGDATE	SAMP_TYPE	SBD	SED	BWTS	BWTE
UR.A.L1H.1.D		12/18/2002	CRATER GRID	0	0.17		
UR.A.L1H.2.0		12/19/2002	CRATER GRID	0	0.17		
UR.A.L1H.3.0		12/19/2002	CRATER GRAB	0	0.17		
UR.A.L1J.1.0		12/18/2002	CRATER GRID	0	0.17		
UR.A.L1J.2.0		12/19/2002	CRATER GRID	0	0.17		
UR.A.L1J.3.0		12/19/2002	CRATER GRAB	0	0.17		

Profiling methods include: Volatiles and Explosives Groundwater methods include: Volatiles, Semivolatiles, Explosives, Pesticides, Herbicides, Metals, and Wet Chemistry Other Sample Types methods are variable SBD = Sample Begin Depth, measured in feet bgs

SED = Sample End Depth, measured in feet bgs

OGDEN ID	LOCID OR WELL	SAMPLED	SAMP TYPE	SBD	SED	BWTS	BWTE	METHOD	OGDEN ANALYTE	PDA
58MW0018B-A	58MW0018B	12/10/2002	GROUNDWATER	175.9	185.58	34.55	44.55	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	YES
58MW0020B-A	58MW0020B	12/10/2002	GROUNDWATER		205	0	43	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	YES
TW00-2D-A	00-2	12/19/2002	GROUNDWATER	71	77	43.95	49.95	OC21V	TRICHLOROETHYLENE (TCE)	
TW00-2D-A	00-2	12/19/2002	GROUNDWATER	71	77	43.95	49.95	OC21V	ACETONE	
TW00-2D-A	00-2	12/19/2002	GROUNDWATER	71	77	43.95	49.95	8330N	2,6-DINITROTOLUENE	NO
TW00-7-A	00-7	12/16/2002	GROUNDWATER	57	63	25.5	31.5	OC21V	ACETONE	
TW1-88A-A	1-88	12/17/2002	GROUNDWATER		102.9	0	67.4	E314.0	PERCHLORATE	
TW1-88B-A	1-88	12/13/2002	GROUNDWATER		105.5	0	69.6	E314.0	PERCHLORATE	
W02-01M1A	02-01	12/10/2002	GROUNDWATER	95	105	42.9	52.9	E314.0	PERCHLORATE	
W02-02M1A	02-02	12/11/2002	GROUNDWATER	114.5	124.5	63.5	73.5	E314.0	PERCHLORATE	
W02-02M2D	02-02	12/11/2002	GROUNDWATER	94.5	104.5	42.65	52.65	E314.0	PERCHLORATE	
W02-03M3A	02-03	12/16/2002	GROUNDWATER	75	85	31.05	41.05	E314.0	PERCHLORATE	
W02-04M1A	02-04	12/16/2002	GROUNDWATER	123	133	73.97	83.97	OC21V	TRICHLOROETHYLENE (TCE)	
W02-04M1A	02-04	12/16/2002	GROUNDWATER	123	133	73.97	83.97	E314.0	PERCHLORATE	
W02-04M2A	02-04	12/16/2002	GROUNDWATER	98	108	48.93	58.93	OC21V	TRICHLOROETHYLENE (TCE)	
W02-04M3A	02-04	12/16/2002	GROUNDWATER	83	93	34.01	44.01	OC21V	TRICHLOROETHYLENE (TCE)	
W02-05M1A	02-05	12/12/2002	GROUNDWATER	110	120	81.44	91.44	E314.0	PERCHLORATE	
W02-05M2A	02-05	12/13/2002	GROUNDWATER	92	102	63.41	73.41	E314.0	PERCHLORATE	
W02-05M2A	02-05	12/13/2002	GROUNDWATER	92	102	63.41	73.41	OC21V	ACETONE	
W02-05M2A	02-05	12/13/2002	GROUNDWATER	92	102	63.41	73.41	OC21V	TOLUENE	
W02-07M3A	02-07	12/11/2002	GROUNDWATER	47	57	13	23	E314.0	PERCHLORATE	
W02-08M2A	02-08	12/16/2002	GROUNDWATER	82	87	60.65	65.65	E314.0	PERCHLORATE	

DATA REPORTED REFLECT CURRENT DATABASE FOR SAMPLES COLLECTED IN SPECIFIED TIMEFRAME. NOT ALL RESULTS ARE COMPLETE.

SBD = SAMPLE COLLECTION BEGIN DEPTH IN FEET BELOW GROUND SURFACE

SED = SAMPLE COLLECTION END DEPTH IN FEET BELOW GROUND SURFACE

BWTS = DEPTH BELOW WATER TABLE, START DEPTH, MEASURED IN FEET

BWTE = DEPTH BELOW WATER TABLE, END DEPTH, MEASURED IN FEET

PDA/YES = Photo Diode Array, Detect Confirmed

^{* =} Interference in sample

^{+ =} PDAs are not good matches

OGDEN ID	LOCID OR WELL	SAMPLED	SAMP TYPE	SBD	SED	BWTS	BWTE	METHOD	OGDEN ANALYTE	PDA
W02-08M3A	02-08	12/19/2002	GROUNDWATER	62	67	40.58	45.58	E314.0	PERCHLORATE	
W02-09M1A	02-09	12/20/2002	GROUNDWATER	74	84	65.26	75.26	E314.0	PERCHLORATE	
W02-12M3D	02-12	12/17/2002	GROUNDWATER	79	89	28.22	38.22	E314.0	PERCHLORATE	
W02-13M2A	02-13	12/17/2002	GROUNDWATER	83	93	44.2	54.2	E314.0	PERCHLORATE	
W132SSA	MW-132	12/10/2002	GROUNDWATER	37	47	0	10	8330N	OCTAHYDRO-1,3,5,7-TETRANITRO-1,3,5,7-TET	YES
W132SSA	MW-132	12/10/2002	GROUNDWATER	37	47	0	10	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	YES
W132SSA	MW-132	12/10/2002	GROUNDWATER	37	47	0	10	8330N	PENTAERYTHRITOL TETRANITRATE	NO
W213M2A	MW-213	12/18/2002	GROUNDWATER	89	99	41.15	51.15	E314.0	PERCHLORATE	
W213M3A	MW-213	12/18/2002	GROUNDWATER	77	82	29.38	34.38	E314.0	PERCHLORATE	
W216SSA	MW-216	12/18/2002	GROUNDWATER	199	209	0	7.13	8330N	PENTAERYTHRITOL TETRANITRATE	NO
W216SSA	MW-216	12/18/2002	GROUNDWATER	199	209	0	7.13	E314.0	PERCHLORATE	
W226M1A	MW-226	12/19/2002	GROUNDWATER	285	295	172	182	E314.0	PERCHLORATE	
W233M3A	MW-233	12/19/2002	GROUNDWATER	231	241	32.8	42.8	E314.0	PERCHLORATE	
W80M1A	MW-80	12/12/2002	GROUNDWATER	130	140	86	96	E314.0	PERCHLORATE	
W80M2A	MW-80	12/12/2002	GROUNDWATER	100	110	56	66	E314.0	PERCHLORATE	
XXM975-A	97-5	12/20/2002	GROUNDWATER	84	94	76	86	E314.0	PERCHLORATE	
M-1B-A	M-1	12/18/2002	GROUNDWATER		45			OC21V	CHLOROFORM	
M-1C-A	M-1	12/18/2002	GROUNDWATER		55			OC21V	CHLOROFORM	
M-1D-A	M-1	12/18/2002	GROUNDWATER		65			OC21V	CHLOROFORM	
M-1D-D	M-1	12/18/2002	GROUNDWATER		65			OC21V	CHLOROFORM	
M-2B-A	M-2	12/16/2002	GROUNDWATER		65			OC21V	CHLOROFORM	
M-2C-A	M-2	12/16/2002	GROUNDWATER		75			OC21V	CHLOROFORM	

DATA REPORTED REFLECT CURRENT DATABASE FOR SAMPLES COLLECTED IN SPECIFIED TIMEFRAME. NOT ALL RESULTS ARE COMPLETE.

SBD = SAMPLE COLLECTION BEGIN DEPTH IN FEET BELOW GROUND SURFACE

SED = SAMPLE COLLECTION END DEPTH IN FEET BELOW GROUND SURFACE

BWTS = DEPTH BELOW WATER TABLE, START DEPTH, MEASURED IN FEET

BWTE = DEPTH BELOW WATER TABLE, END DEPTH, MEASURED IN FEET

PDA/YES = Photo Diode Array, Detect Confirmed

^{* =} Interference in sample

^{+ =} PDAs are not good matches

OGDEN ID	LOCID OR WELL	SAMPLED	SAMP TYPE	SBD	SED	BWTS	BWTE	METHOD	OGDEN ANALYTE	PDA
M-2D-A	M-2	12/16/2002	GROUNDWATER		85			OC21V	CHLOROFORM	
M-3B-A	M-3	12/16/2002	GROUNDWATER		65			OC21V	CHLOROFORM	
M-3C-A	M-3	12/16/2002	GROUNDWATER		75			OC21V	CHLOROFORM	
M-3D-A	M-3	12/16/2002	GROUNDWATER		85			OC21V	CHLOROFORM	
M-4B-A	M-4	12/18/2002	GROUNDWATER		69			OC21V	CHLOROFORM	
M-4C-A	M-4	12/18/2002	GROUNDWATER		79			OC21V	CHLOROFORM	
M-4D-A	M-4	12/18/2002	GROUNDWATER		89			OC21V	CHLOROFORM	
M-5B-A	M-5	12/18/2002	GROUNDWATER		65			OC21V	CHLOROFORM	
M-5C-A	M-5	12/18/2002	GROUNDWATER		75			OC21V	CHLOROFORM	
M-5D-A	M-5	12/18/2002	GROUNDWATER		85			OC21V	CHLOROFORM	
M-6B-A	M-6	12/17/2002	GROUNDWATER		59			OC21V	CHLOROFORM	
M-6C-A	M-6	12/17/2002	GROUNDWATER		69			OC21V	CHLOROFORM	
M-6D-A	M-6	12/17/2002	GROUNDWATER		79			OC21V	CHLOROFORM	
M-7B-A	M-7	12/17/2002	GROUNDWATER		59			OC21V	CHLOROFORM	
M-7C-A	M-7	12/17/2002	GROUNDWATER		65			OC21V	CHLOROFORM	
M-7D-A	M-7	12/17/2002	GROUNDWATER		75			OC21V	CHLOROFORM	
MW00-4-A	00-4	12/17/2002	GROUNDWATER	64	70	38	44	OC21V	CHLOROFORM	
TW00-1-A	00-1	12/19/2002	GROUNDWATER	64	70			OC21V	CHLOROFORM	
TW00-2D-A	00-2	12/19/2002	GROUNDWATER	71	77	43.95	49.95	OC21V	CHLOROFORM	
TW00-4DA-A	00-4D	12/13/2002	GROUNDWATER		75	0	0	OC21V	CHLOROFORM	
TW00-4DA-D	00-4D	12/13/2002	GROUNDWATER		75	0	0	OC21V	CHLOROFORM	
TW00-4DB-A	00-4D	12/13/2002	GROUNDWATER		85	0	0	OC21V	CHLOROFORM	

DATA REPORTED REFLECT CURRENT DATABASE FOR SAMPLES COLLECTED IN SPECIFIED TIMEFRAME. NOT ALL RESULTS ARE COMPLETE.

SBD = SAMPLE COLLECTION BEGIN DEPTH IN FEET BELOW GROUND SURFACE

SED = SAMPLE COLLECTION END DEPTH IN FEET BELOW GROUND SURFACE

BWTS = DEPTH BELOW WATER TABLE, START DEPTH, MEASURED IN FEET

BWTE = DEPTH BELOW WATER TABLE, END DEPTH, MEASURED IN FEET

PDA/YES = Photo Diode Array, Detect Confirmed

PDA/NO = Photo Diode Array, Detect Not Confirmed

* = Interference in sample

+ = PDAs are not good matches

OGDEN ID	LOCID OR WELL	SAMPLED	SAMP TYPE	SBD	SED	BWTS	BWTE	METHOD	OGDEN ANALYTE	PDA
TW00-5-A	00-5	12/16/2002	GROUNDWATER	50	56	15.5	21.5	OC21V	CHLOROFORM	
TW00-6-A	00-6	12/13/2002	GROUNDWATER	36	42	9.6	15.6	OC21V	CHLOROFORM	
TW00-7-A	00-7	12/16/2002	GROUNDWATER	57	63	25.5	31.5	OC21V	CHLOROFORM	
W02-01M1A	02-01	12/10/2002	GROUNDWATER	95	105	42.9	52.9	OC21V	CHLOROFORM	
W02-01M2A	02-01	12/11/2002	GROUNDWATER	83	93	30.9	40.9	OC21V	CHLOROFORM	
W02-02M1A	02-02	12/11/2002	GROUNDWATER	114.5	124.5	63.5	73.5	OC21V	CHLOROFORM	
W02-02M2A	02-02	12/11/2002	GROUNDWATER	94.5	104.5	42.65	52.65	OC21V	CHLOROFORM	
W02-02M2D	02-02	12/11/2002	GROUNDWATER	94.5	104.5	42.65	52.65	OC21V	CHLOROFORM	
W02-02SSA	02-02	12/11/2002	GROUNDWATER	49.5	59.5	0	10	OC21V	CHLOROFORM	
W02-03M1A	02-03	12/16/2002	GROUNDWATER	130	140	86.1	96.1	OC21V	CHLOROFORM	
W02-03M2A	02-03	12/16/2002	GROUNDWATER	92	102	48.15	58.15	OC21V	CHLOROFORM	
W02-03M3A	02-03	12/16/2002	GROUNDWATER	75	85	31.05	41.05	OC21V	CHLOROFORM	
W02-04M1A	02-04	12/16/2002	GROUNDWATER	123	133	73.97	83.97	OC21V	CHLOROFORM	
W02-04M2A	02-04	12/16/2002	GROUNDWATER	98	108	48.93	58.93	OC21V	CHLOROFORM	
W02-04M3A	02-04	12/16/2002	GROUNDWATER	83	93	34.01	44.01	OC21V	CHLOROFORM	
W02-05M1A	02-05	12/12/2002	GROUNDWATER	110	120	81.44	91.44	OC21V	CHLOROFORM	
W02-05M2A	02-05	12/13/2002	GROUNDWATER	92	102	63.41	73.41	OC21V	CHLOROFORM	
W02-05M3A	02-05	12/13/2002	GROUNDWATER	70	80	41.37	51.37	OC21V	CHLOROFORM	
W02-10M1A	02-10	12/20/2002	GROUNDWATER	135	145	94	104	OC21V	CHLOROFORM	
W02-10M2A	02-10	12/20/2002	GROUNDWATER	110	120	68.61	78.61	OC21V	CHLOROFORM	
W02-10M3A	02-10	12/20/2002	GROUNDWATER	85	95	43.65	53.65	OC21V	CHLOROFORM	
W02-10M3D	02-10	12/20/2002	GROUNDWATER	85	95	43.65	53.65	OC21V	CHLOROFORM	

DATA REPORTED REFLECT CURRENT DATABASE FOR SAMPLES COLLECTED IN SPECIFIED TIMEFRAME. NOT ALL RESULTS ARE COMPLETE.

BWTE = DEPTH BELOW WATER TABLE, END DEPTH, MEASURED IN FEET

PDA/YES = Photo Diode Array, Detect Confirmed

SBD = SAMPLE COLLECTION BEGIN DEPTH IN FEET BELOW GROUND SURFACE

SED = SAMPLE COLLECTION END DEPTH IN FEET BELOW GROUND SURFACE

BWTS = DEPTH BELOW WATER TABLE, START DEPTH, MEASURED IN FEET

^{* =} Interference in sample

^{+ =} PDAs are not good matches

OGDEN ID	LOCID OR WELL	SAMPLED	SAMP TYPE	SBD	SED	BWTS	BWTE	METHOD	OGDEN ANALYTE	PDA
W02-12M1A	02-12	12/17/2002	GROUNDWATER	109	119	58.35	68.35	OC21V	CHLOROFORM	
W02-15M1A	02-15	12/12/2002	GROUNDWATER	125	135	75.63	85.63	OC21V	CHLOROFORM	
W02-15M2A	02-15	12/12/2002	GROUNDWATER	101	111	51.5	61.5	OC21V	CHLOROFORM	
W02-15M3A	02-15	12/12/2002	GROUNDWATER	81	91	31.4	41.4	OC21V	CHLOROFORM	
W213M1A	MW-213	12/18/2002	GROUNDWATER	133	143	85.01	95.01	OC21V	CHLOROFORM	
W213M2A	MW-213	12/18/2002	GROUNDWATER	89	99	41.15	51.15	OC21V	CHLOROFORM	
W213M3A	MW-213	12/18/2002	GROUNDWATER	77	82	29.38	34.38	OC21V	CHLOROFORM	
W216M1A	MW-216	12/18/2002	GROUNDWATER	253	263	51.19	61.19	OC21V	CHLOROFORM	
W216SSA	MW-216	12/18/2002	GROUNDWATER	199	209	0	7.13	OC21V	CHLOROFORM	
W219M1A	MW-219	12/17/2002	GROUNDWATER	357	367	178	188	OC21V	CHLOROFORM	
W219M2A	MW-219	12/17/2002	GROUNDWATER	332	342	153.05	163.05	OC21V	CHLOROFORM	
W219M3A	MW-219	12/17/2002	GROUNDWATER	315	325	135.8	145.8	OC21V	CHLOROFORM	
W219M4A	MW-219	12/17/2002	GROUNDWATER	225	235	45.7	55.7	OC21V	CHLOROFORM	
W226M1A	MW-226	12/19/2002	GROUNDWATER	285	295	172	182	OC21V	CHLOROFORM	
W226M2A	MW-226	12/19/2002	GROUNDWATER	175	185	61.7	71.7	OC21V	CHLOROFORM	
W226M3A	MW-226	12/19/2002	GROUNDWATER	135	145	21.53	31.53	OC21V	CHLOROFORM	
W233M1A	MW-233	12/19/2002	GROUNDWATER	356	366	157.8	167.8	OC21V	CHLOROFORM	
W233M2A	MW-233	12/19/2002	GROUNDWATER	331	341	132.8	142.8	OC21V	CHLOROFORM	
W233M3A	MW-233	12/19/2002	GROUNDWATER	231	241	32.8	42.8	OC21V	CHLOROFORM	
WS-4AD-A	WS-4A	12/19/2002	GROUNDWATER	218	228	148.5	158.5	OC21V	CHLOROFORM	
WS-4AD-D	WS-4A	12/19/2002	GROUNDWATER	155	165	85.5	95.5	OC21V	CHLOROFORM	
WS-4AS-A	WS-4A	12/19/2002	GROUNDWATER	155	165	85.5	95.5	OC21V	CHLOROFORM	

DATA REPORTED REFLECT CURRENT DATABASE FOR SAMPLES COLLECTED IN SPECIFIED TIMEFRAME. NOT ALL RESULTS ARE COMPLETE.

SBD = SAMPLE COLLECTION BEGIN DEPTH IN FEET BELOW GROUND SURFACE

SED = SAMPLE COLLECTION END DEPTH IN FEET BELOW GROUND SURFACE

BWTS = DEPTH BELOW WATER TABLE, START DEPTH, MEASURED IN FEET

BWTE = DEPTH BELOW WATER TABLE, END DEPTH, MEASURED IN FEET

PDA/YES = Photo Diode Array, Detect Confirmed

PDA/NO = Photo Diode Array, Detect Not Confirmed

* = Interference in sample

^{+ =} PDAs are not good matches

OGDEN ID	LOCID OR WELL	SAMPLED	SAMP TYPE	SBD	SED	BWTS	BWTE	METHOD	OGDEN ANALYTE	PDA
G252DAA	MW-252	12/12/2002	PROFILE	120	120	6.5	6.5	8330N	1,3-DINITROBENZENE	NO
G252DAA	MW-252	12/12/2002	PROFILE	120	120	6.5	6.5	8330N	4-AMINO-2,6-DINITROTOLUENE	NO
G252DAA	MW-252	12/12/2002	PROFILE	120	120	6.5	6.5	8330N	2,6-DINITROTOLUENE	NO*
G252DAA	MW-252	12/12/2002	PROFILE	120	120	6.5	6.5	8330N	PICRIC ACID	NO
G252DAA	MW-252	12/12/2002	PROFILE	120	120	6.5	6.5	8330N	NITROGLYCERIN	NO
G252DAA	MW-252	12/12/2002	PROFILE	120	120	6.5	6.5	8330N	3-NITROTOLUENE	NO
G252DAA	MW-252	12/12/2002	PROFILE	120	120	6.5	6.5	E314.0	PERCHLORATE	
G252DAA	MW-252	12/12/2002	PROFILE	120	120	6.5	6.5	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	NO
G252DBA	MW-252	12/12/2002	PROFILE	130	130	16.5	16.5	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	NO
G252DBA	MW-252	12/12/2002	PROFILE	130	130	16.5	16.5	8330N	NITROGLYCERIN	NO
G252DCA	MW-252	12/13/2002	PROFILE	140	140	26.5	26.5	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	NO
G252DCA	MW-252	12/13/2002	PROFILE	140	140	26.5	26.5	8330N	NITROGLYCERIN	NO
G252DDA	MW-252	12/13/2002	PROFILE	150	150	36.5	36.5	8330N	NITROGLYCERIN	NO
G252DDA	MW-252	12/13/2002	PROFILE	150	150	36.5	36.5	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	NO
G252DDA	MW-252	12/13/2002	PROFILE	150	150	36.5	36.5	E314.0	PERCHLORATE	
G252DGA	MW-252	12/18/2002	PROFILE	180	180	66.5	66.5	8330N	NITROGLYCERIN	NO
G252DGA	MW-252	12/18/2002	PROFILE	180	180	66.5	66.5	8330N	PICRIC ACID	NO
G252DGA	MW-252	12/18/2002	PROFILE	180	180	66.5	66.5	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	NO
G252DGA	MW-252	12/18/2002	PROFILE	180	180	66.5	66.5	8330N	4-AMINO-2,6-DINITROTOLUENE	NO
G252DHA	MW-252	12/18/2002	PROFILE	190	190	76.5	76.5	8330N	3-NITROTOLUENE	NO
G252DHA	MW-252	12/18/2002	PROFILE	190	190	76.5	76.5	8330N	PICRIC ACID	NO
G252DHA	MW-252	12/18/2002	PROFILE	190	190	76.5	76.5	8330N	NITROGLYCERIN	NO

DATA REPORTED REFLECT CURRENT DATABASE FOR SAMPLES COLLECTED IN SPECIFIED TIMEFRAME. NOT ALL RESULTS ARE COMPLETE.

SBD = SAMPLE COLLECTION BEGIN DEPTH IN FEET BELOW GROUND SURFACE

SED = SAMPLE COLLECTION END DEPTH IN FEET BELOW GROUND SURFACE

BWTS = DEPTH BELOW WATER TABLE, START DEPTH, MEASURED IN FEET

BWTE = DEPTH BELOW WATER TABLE, END DEPTH, MEASURED IN FEET

PDA/YES = Photo Diode Array, Detect Confirmed

^{* =} Interference in sample

^{+ =} PDAs are not good matches

OGDEN ID	LOCID OR WELL	SAMPLED	SAMP TYPE	SBD	SED	BWTS	BWTE	METHOD	OGDEN ANALYTE	PDA
G252DHA	MW-252	12/18/2002	PROFILE	190	190	76.5	76.5	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	NO

DATA REPORTED REFLECT CURRENT DATABASE FOR SAMPLES COLLECTED IN SPECIFIED TIMEFRAME. NOT ALL RESULTS ARE COMPLETE.

SBD = SAMPLE COLLECTION BEGIN DEPTH IN FEET BELOW GROUND SURFACE

SED = SAMPLE COLLECTION END DEPTH IN FEET BELOW GROUND SURFACE

BWTS = DEPTH BELOW WATER TABLE, START DEPTH, MEASURED IN FEET

BWTE = DEPTH BELOW WATER TABLE, END DEPTH, MEASURED IN FEET

PDA/YES = Photo Diode Array, Detect Confirmed

PDA/NO = Photo Diode Array, Detect Not Confirmed

* = Interference in sample

+ = PDAs are not good matches