WEEKLY PROGRESS UPDATE FOR APRIL 2 – APRIL 6, 2001

EPA REGION I ADMINISTRATIVE ORDERS SDWA 1-97-1019 & 1-2000-0014 MASSACHUSETTS MILITARY RESERVATION TRAINING RANGE AND IMPACT AREA

The following summary of progress is for the period from April 2 to April 6, 2001.

1. SUMMARY OF ACTIONS TAKEN

Drilling progress as of April 6 is summarized in Table 1.

	Table 1. Drilling progress as of April 6, 2001									
Boring Number	Purpose of Boring/Well	Total Depth (ft bgs)	Saturated Depth (ft bwt)	Completed Well Screens (ft bgs)						
MW-162	Demo 1 well (D1P-3)	210	135							
MW-164	J-1 Range well (J1P-5)	230	114							
Bgs = belov	Bgs = below ground surface									
Bwt = below	w water table									

Completed drilling of MW-162 (D1P-3). Commenced drilling MW-164 (J1P-5). Continued development of newly installed wells.

Samples collected during the reporting period are summarized in Table 2. Groundwater sampling continued for the first round of newly installed wells and FS-12 Response wells. Groundwater profile samples were collected for MW-162 and MW-164. Water samples were collected from the RRA containment pad. Soil samples were collected at the Former K Range, Gravity Anti-Tank Range, Demo Area 2, Inactive Demo Area, the Grenade Courts, from drill cuttings of recently installed wells, and at a Stage II supplemental BIP grid in the MW-105 access road. Soil samples were also collected from the Former H Range as part of the Rapid Response Action. Pre- and post-detonation soil samples were collected in the HUTA. As part of the HUTA investigation, soil and wipe samples were collected from debris in Test Pit 4. Soil samples were also collected in Test Pit 3 and Test Pit 5 areas.

The Guard, EPA, and MADEP had a meeting on April 5 to discuss technical issues, including the following:

CS-18 and CS-19 Updates

Dave Del Marco (Jacobs) provided an update on CS-18 and CS-19. A 1-page handout was distributed.

- Continuing procurement process for UXO avoidance survey and subsurface sampling services for CS-19. Jacobs requested a meeting with the agencies to discuss the test pit soil disposition. EPA requested that they provide a letter summarizing the procedures prior to the next Technical Meeting.
- Continue recalibration of the groundwater model, which should be completed by 4/12/01 and presented at the next Technical Meeting (4/19/01).
- Received the Record of Environmental Consideration from the Army National Guard and NHESP.

- Scheduled to collect the "puddle" surface water and sediment samples on Friday, 4/6/01.
- Completed the three shallow subsurface soil borings and completed the UXO avoidance survey for the monitoring well locations at CS-18. Should begin drilling the monitoring wells on Monday 4/16/01. EPA asked if any UXO was found in the survey. Jacobs indicated that no UXO was found.

Water Supply Study Update

- Ben Gregson indicated that there was no new information on the water supply study but did indicate that during the pipeline trench excavation, approximately six 50 caliber bullets and one mortar fin were found. EPA requested a map showing their locations. USACE indicated that they would check with Foster Wheeler to see if they could produce the map.
- Mark Panni summarized his oversite of the pipeline construction. PID screened the
 excavation soil from the area of the FS-12 source area (L Range to the Top of the hill before
 the FS-12 treatment plant). Two screening locations had PID detections. The soil from
 these two locations was sent out for EPH and VPH analysis. The results of the analysis was
 ND, therefore a protective sleeve was placed on the pipeline and the excavated soil was
 placed back into the trench. EPA requested an update and schedule for the water supply
 study for the next Technical Meeting.

Munitions Survey Update

Larry Hudgins (Tetra Tech) presented the update concerning the HUTA, the J-Range, and the Air Mag investigations. A two-page handout was distributed.

- HUTA Test Pit #1 is completed.
- HUTA Test Pit #2 excavation is complete and currently being backfilled
- HUTA Test Pit #3 surface geophysics is completed, excavating anomalies by hand, and sampling is ongoing.
- HUTA Test Pit #4 excavation of lifts 1A, 1B, 1C, and 1D are completed, geophysics completed on lift 2 and hand excavation of anomalies is ongoing, and six BIPs will be done on 4/5/01.
- HUTA Test Pit #5 road building and engineering controls being scheduled.
- HUTA Test Pit #6 lifts 1A and 1B have been excavated and geophysics completed on lift 1C with hand excavation ongoing.
- Geophysical survey field work of the J1, J2, and J3 ranges is complete. Evaluating the preliminary data sets on J1 and J2. Awaiting data set on the J3 Range. Their plan is to

have the presentation on the J-2 Range on April 18th and the J1 and J3 Ranges on June

15th. EPA indicated that they thought that the ground geophysics maps were done for the J1 and J2 Ranges and that they should not have to wait until June to see the J1 presentation. It was agreed that the J1 Range presentation will tentatively be done in mid May.

- Air Mag data on all areas is being processed with available cultural targets being annotated. Target selections has been provided by the subcontractor and is being reviewed by Tetra Tech. The Final draft report received for Tetra Tech review. Prepared technical approach and briefed NGB and COE on ground-truthing of anomalies. Further screening and filtering of anomalies is ongoing for subsequent ground-truthing.
- Depleted Uranium data being analyzed by contract laboratory and awaiting results and data validation. Draft Table of Contents prepared IAW COE Data Item Descriptions.

Rapid Response Action Update

Scott Veenstra (AMEC) presented an update of the RRA. A one-page summary was distributed.

- Water management continues at the containment pad pending relocation of retained soil stockpiles from processing area to soil receiving area.
- Relocation of retained soil stockpiles to receiving portion of containment pad scheduled for the week of 4/9/01.
- Received partial data set from Former H Range delineation sampling. The partial data set and sketch of the grids were distributed. EPA asked if there was a space between the grids as shown in the sketch. Scott indicated that there was a 16-foot space between the two areas and that it would be excavated. EPA asked that the location of the lead bullets and their depths be added to the next map. EPA asked if there was evidence of a berm in the area. Scott indicated that it appears that they fired into the hillside and that the grids cover the toe of the hill.
- Delineation soil sampling summary report is scheduled to go to the agencies around 4/19/01. Grains Sizing Analysis for Soil Washing Process Confirmation/Optimization Summary to agencies around 4/27/01.

Groundwater Study

John Rice (AMEC) presented an update of the groundwater study. A one-page summary was distributed.

- Completed well installation of MW-163 (J3 detonation pit/burn area) last week. Completed drilling of MW-162 (D1P-3) and commenced drilling of MW-164 (J1P-5) this week. Will need to select screens for MW-162 on Friday. Complete well installation of MW-163 and MW-164; and commence drilling of D1P-4 and J1P-7 next week.
- Resampled 90PZ0204 for perchlorate this week and will continue groundwater sampling on newly installed wells next week. Still waiting for access from property owner to sample 90PZ0211 and 90PZ0208.
- Completed UXO avoidance at the Gravity Range, Former K Range, Inactive Demo, and Demo 2 soil grids this week. Next week will continue avoidance on Phase IIb grids. 3.5 inch rocket located during the reconnaissance at the former K Range is still in place and located approximately 5-feet from the D soil grid.
- Complete former K Range, Inactive Demo, and Demo 2 soil grids this week. EPA requested that when the set of data from the K Range soil sampling results are in that they be reported at the Tech meeting. Commence former SAR (B, C, and D) and the grenade courts next week.
- No vegetation removal this week. The D1P-4 drill pad (2,800ft²) and J1P-7 pad and access road (4.450 ft²) next week.
- An email earlier in the day on the J-1 Range trench sampling plan was distributed. The message outlined the collection of one composite sample from the pile of excavated visibly clean soil pile, one composite sample from the visibly dirty soil pile, and 5 composite samples from the floor and walls of the excavation. EPA requested that two composite soil samples be collected for the visibly dirty soil pile and that each composite sample consists of 3 to 5 grab samples. It was also agreed to put the samples on a 2-week turn around time and that the samples would be analyzed for explosives, metals, VOC, SVOC, pest/PCB, and herbicides. Backfill would be based on results of all analyses.

Document /Schedule Status Update

Marc Grant (AMEC) provided the update on document and schedule status, distributing a one page table, one page chart, and a table outlining the scheduling issues. Comments on the schedule:

• Demo 1 - need to resolve soil COCs. EPA expects to distribute comments tomorrow 4-6-01.

- Central Impact Area no change from last week; expecting to submit draft soil report on original approved schedule per last week's discussion though it will not include complete HUTA data.
- J-2 Range Guard proposes to submit an MOR to capture agreements reached at 4-4-01 site walk and allow scoping of additional delineation work.
- Gun/Mortar still showing COC report by 4-10 as agencies did not agree to suggestion
 made last week to wait for resolution of Demo 1 COCs. EPA indicated they do favor waiting
 for resolution since many of the same issues there are commenting on for Demo 1 would
 apply to the Gun/Mortar positions. Guard indicated they will consider a new date for
 submittal.
- Dates were added to the table for RRA reports (delineation report should be 4-19, not 4-17).

Miscellaneous

- EPA requested written response to Jane Dolan's 3/22/01 e-mail on Snake Pond wells sampled for perchlorate.
- EPA requested that the Guard proceed with work on the 8321 dyes as discussed between the Guard and EPA earlier in the week.
- EPA requested an update on 8321 full scan analysis. AMEC indicated that data evaluation

is expected within 1 week and should be ready for the Tech Meeting on the 19th.

- EPA indicated that as part of the ASR, military history and the Picatinny DTRA were due in March. Tetra Tech indicated they would check on the status and get back to EPA today.
- EPA asked if the Demo 1 dioxin results were distributed to everyone. Corps indicated that they will go out to everyone.
- EPA indicated that they are reviewing the LTM plan. Guard requested agencies provide a list of wells that they agree on by 4/16/01 to allow scoping and sampling to begin in April. It was suggested the agencies and Guard have a meeting on 4/18/01 to discuss the plan.
- EPA reviewed what was going to be included at the meetings on 4/19/01: the PCN sampling discussed during the Tech Meeting, J-2 ground mag results during the meeting, and the Central Impact Area resolution would be after the Tech meeting.

A discussion of the HUTA between the Guard, EPA, and the Corps followed the Tech meeting.

After the HUTA meeting there was a discussion on the Demo 1 Initial Screening of Alternatives Report (specifically EPA's General Comment 1).

2. SUMMARY OF DATA RECEIVED

Rush data are summarized in Table 3. These data are for analyses that are performed on a fast turnaround time, typically 1-5 days. Explosive analyses for monitoring wells, and explosive and VOC analyses for groundwater profile samples, are conducted in this timeframe. The rush data are not validated, but are provided as an indication of the most recent preliminary results. Table 3 summarizes only detects, and does not show samples with non-detects.

The status of the detections with respect to confirmation using Photo Diode Array (PDA) spectra is indicated in Table 3. PDA is a procedure that has been implemented for the explosive analysis, to reduce the likelihood of false positive identifications. Where the PDA status is "YES" in Table 3, the detected compound is verified as properly identified. Where the status is "NO", the identification of an explosive has been determined to be a false positive. Where the status is blank, PDA has not yet been used to evaluate the detection, or PDA is not applicable

because the analyte is a VOC. Most explosive detections verified by PDA are confirmed to be present upon completion of validation. Table 3 includes the following detections:

- Groundwater samples collected from MW-153M1 had a detection of RDX that was verified by PDA spectra. This is the first sampling round for this well and RDX was detected in a similar concentration in the profile sample collected from the same depth as the screened interval.
- The groundwater profile samples from MW-162 had detections of RDX (1 interval), nitroglycerin (2 intervals), and picric acid (4 intervals). None of the explosive detections were verified by PDA spectra.
- The groundwater profile samples from MW-164 had detections of acetone (11 intervals), 1,1-DCE (1 interval), 2-hexanone (1 interval), chloroform (4 intervals), chloromethane (1 interval), MEK (8 intervals), 2,6-DNT (1 interval), 2A-DNT (1 interval), 2,6-diamino-4-nitrotoluene (1 interval), nitrobenzene (1 interval), nitroglycerin (1 interval), picric acid (1 interval), 3-nitrotoluene (2 intervals), HMX (2 intervals), and RDX (8 intervals). The 3-nitrotoluene, HMX, and RDX detections were verified by PDA spectra.
- Water samples collected from the RRA containment pad on March 24 had detections of iron, manganese, zinc, and RDX. The RDX detection was verified by PDA spectra.
- Water samples collected from the RRA containment pad on March 27 had detections of aluminum, barium, boron, cadmium, calcium, iron, lead, manganese, nickel, potassium, sodium, zinc, and RDX. The RDX detection was verified by PDA spectra.
- Soil samples collected at grids HA and HB at Former H Range (79HA, 79HB) had detections of DDE, DDT, and/or Dieldrin and detections of lead. Lead concentrations in samples collected at 0-6 inches in these grids exceeded the RRA cleanup goal.
- Soil samples collected at grid HH at Former H Range (79HH) had detections of DDE, DDT, and Dieldrin and detections of lead. Lead concentrations in samples collected at 0-6 inches and 6-12 inches in this grid exceeded the RRA cleanup goal.
- Soil samples collected at grids HG, IB, and IE at Former H Range (79HG, 79IB, 79IE) had detections of DDE, DDT, and/or Dieldrin and detections of lead. Dieldrin concentrations in samples collected at 0-6 inches in these grids exceeded the RRA cleanup goal.
- Soil samples collected at grid IG at Former H Range (79IG) had detections of DDE, DDT, and/or Dieldrin and detections of lead. Dieldrin concentrations in samples collected at 6-12 inches in this grid exceeded the RRA cleanup goal.
- Soil samples collected at grids ID, IF, and IH at Former H Range (79ID, 79IF, 79IH) had detections of DDE, DDT, and/or Dieldrin and detections of lead. Dieldrin and lead concentrations in samples collected at 0-6 inches in these grids exceeded the RRA cleanup goal. Lead concentrations detected at 12-18 inches in grid IH also exceeded the RRA cleanup goal.
- Soil samples collected at grids HD and HE at Former H Range (79HD 79HE) had detections of lead. None of the lead detections exceeded the RRA cleanup goal.

- Soil samples collected at grids HC, HF, and IC at Former H Range (79HC, 79HF, 79IC) had detections of DDD, DDE, DDT, and/or dieldrin and detections of lead. None of the detected constituents exceeded the RRA cleanup goals.
- Soil samples collected at grid 87E, the outermost grid around Mortar Target 9, had detections of TNT, RDX, and picric acid. The TNT and RDX detections were verified by PDA spectra. TNT detections in the composite sample collected at the grid exceeded the RRA cleanup goal at 0-6 inches, 6-12 inches, and 12-18 inches. TNT detections at discrete samples collected at grid node seven exceeded the RRA cleanup goal at 12-18 inches, and 18-24 inches. The RDX detection at the discrete sample collected at grid node three also exceeded the RRA cleanup goal.

3. DELIVERABLES SUBMITTED

Weekly Progress Update March 19 - March 23

4/3/01

4. SCHEDULED ACTIONS

Scheduled actions for the week of April 9 include well installation of MW-162 (D1P-3), and MW-164 (J1P-5); commence and complete drilling of D1P-4; continue development of newly installed wells; and continue sampling of Phase IIb soil grids.

5. SUMMARY OF ACTIVITIES FOR DEMO 1

EPA comments were received on the Soil COC Report on April 6, 2001 and the responses to comments are being prepared. The Draft Soil Report is also being prepared. Drilling of additional downgradient wells at Demo 1 is ongoing. Analysis of second round groundwater samples from newly installed wells is ongoing.

OGDEN_ID	LOCID OR WELL ID	DATE SAMPLED	SAMPLE TYPE	SBD	SED	BWTS	BWTE
4.A.2.00627.1.0	A.2.00627.R	04/04/2001	CRATER GRID	0.75	1.00		
4.A.2.00627.1.D	A.2.00627.R	04/04/2001	CRATER GRID	0.75	1.00		
4.A.2.00627.10.0	A.2.00627.R	04/05/2001	CRATER GRID	0.75	1.00		
4.A.2.00627.10.D	A.2.00627.R	04/05/2001	CRATER GRID	0.75	1.00		
4.A.2.00627.2.0	A.2.00627.R	04/04/2001	CRATER GRID	0.75	1.00		
4.A.2.00627.2.D	A.2.00627.R	04/04/2001	CRATER GRID	0.75	1.00		
4.A.2.00627.3.0	A.2.00627.R	04/04/2001	CRATER GRID	0.75	1.00		
4.A.2.00627.3.D	A.2.00627.R	04/04/2001	CRATER GRID	0.75	1.00		
4.A.2.00627.4.0	A.2.00627.R	04/04/2001	CRATER GRID	0.75	1.00		
4.A.2.00627.4.D	A.2.00627.R	04/04/2001	CRATER GRID	0.75	1.00		
4.A.2.00627.5.0	A.2.00627.R	04/04/2001	CRATER GRID	0.75	1.00		
4.A.2.00627.5.D	A.2.00627.R	04/04/2001	CRATER GRID	0.75	1.00		
4.A.2.00627.6.0	A.2.00627.R	04/05/2001	CRATER GRID	0.75	1.00		
4.A.2.00627.6.D	A.2.00627.R	04/05/2001	CRATER GRID	0.75	1.00		
4.A.2.00627.7.0	A.2.00627.R	04/05/2001	CRATER GRID	0.75	1.00		
4.A.2.00627.7.D	A.2.00627.R	04/05/2001	CRATER GRID	0.75	1.00		
4.A.2.00627.8.0	A.2.00627.R	04/05/2001	CRATER GRID	0.75	1.00		
4.A.2.00627.8.D	A.2.00627.R	04/05/2001	CRATER GRID	0.75	1.00		
4.A.2.00627.9.0	A.2.00627.R	04/05/2001	CRATER GRID	0.75	1.00		
4.A.2.00627.9.D	A.2.00627.R	04/05/2001	CRATER GRID	0.75	1.00		
4.A.2.00628.1.0	A.2.00628.R	04/04/2001	CRATER GRID	0.50	0.75		
4.A.2.00628.10.0	A.2.00628.R	04/05/2001	CRATER GRID	0.50	0.75		
4.A.2.00628.2.0	A.2.00628.R	04/04/2001	CRATER GRID	0.50	0.75		
4.A.2.00628.3.0	A.2.00628.R	04/04/2001	CRATER GRID	0.50	0.75		
4.A.2.00628.4.0	A.2.00628.R	04/04/2001	CRATER GRID	0.50	0.75		
4.A.2.00628.5.0	A.2.00628.R	04/04/2001	CRATER GRID	0.50	0.75		
4.A.2.00628.6.0	A.2.00628.R	04/05/2001	CRATER GRID	0.50	0.75		
4.A.2.00628.7.0	A.2.00628.R	04/05/2001	CRATER GRID	0.50	0.75		
4.A.2.00628.8.0	A.2.00628.R	04/05/2001	CRATER GRID	0.75	1.00		
4.A.2.00628.9.0	A.2.00628.R	04/05/2001	CRATER GRID	0.75	1.00		
4.A.2.00629.1.0	A.2.00629.R	04/04/2001	CRATER GRID	0.75	1.00		
4.A.2.00629.10.0	A.2.00629.R	04/05/2001	CRATER GRID	0.75	1.00		
4.A.2.00629.2.0	A.2.00629.R	04/04/2001	CRATER GRID	0.75	1.00		
4.A.2.00629.3.0	A.2.00629.R	04/04/2001	CRATER GRID	0.75	1.00		
4.A.2.00629.4.0	A.2.00629.R	04/04/2001	CRATER GRID	0.75	1.00		
4.A.2.00629.5.0	A.2.00629.R	04/04/2001	CRATER GRID	0.75	1.00		
4.A.2.00629.6.0	A.2.00629.R	04/05/2001	CRATER GRID	0.75	1.00		
4.A.2.00629.7.0	A.2.00629.R	04/05/2001	CRATER GRID	0.75	1.00		
4.A.2.00629.8.0	A.2.00629.R	04/05/2001	CRATER GRID	0.75	1.00		
4.A.2.00629.9.0	A.2.00629.R	04/05/2001	CRATER GRID	0.75	1.00		
4.A.2.00630.1.0	A.2.00630.R	04/04/2001	CRATER GRID	0.50	0.75		
4.A.2.00630.10.0	A.2.00630.R	04/05/2001	CRATER GRID	0.50	0.75		
4.A.2.00630.2.0	A.2.00630.R	04/04/2001	CRATER GRID	0.50	0.75		

Profiling methods include: Volatiles and Explosives

Groundwater methods include: Volatiles, Semivolatiles, Explosives, Pesticides, Herbicides, Metals, and Wet Chemistry Other Sample Types methods are variable

SBD = Sample Begin Depth, measured in feet bgs

SED = Sample End Depth, measured in feet bgs

BWTS = Depth below water table, start depth, measured in feet

OGDEN_ID	LOCID OR WELL ID	DATE SAMPLED	SAMPLE TYPE	SBD	SED	BWTS	BWTE
4.A.2.00630.3.0	A.2.00630.R	04/04/2001	CRATER GRID	0.50	0.75		
4.A.2.00630.4.0	A.2.00630.R	04/04/2001	CRATER GRID	0.50	0.75		
4.A.2.00630.5.0	A.2.00630.R	04/04/2001	CRATER GRID	0.50	0.75		
4.A.2.00630.6.0	A.2.00630.R	04/05/2001	CRATER GRID	0.50	0.75		
4.A.2.00630.7.0	A.2.00630.R	04/05/2001	CRATER GRID	0.50	0.75		
4.A.2.00630.8.0	A.2.00630.R	04/05/2001	CRATER GRID	0.50	0.75		
4.A.2.00630.9.0	A.2.00630.R	04/05/2001	CRATER GRID	0.50	0.75		
4.A.2.00631.1.0	A.2.00631.R	04/04/2001	CRATER GRID	0.25	0.50		
4.A.2.00631.10.0	A.2.00631.R	04/05/2001	CRATER GRID	0.25	0.50		
4.A.2.00631.2.0	A.2.00631.R	04/04/2001	CRATER GRID	0.25	0.50		
4.A.2.00631.3.0	A.2.00631.R	04/04/2001	CRATER GRID	0.25	0.50		
4.A.2.00631.4.0	A.2.00631.R	04/04/2001	CRATER GRID	0.25	0.50		
4.A.2.00631.5.0	A.2.00631.R	04/04/2001	CRATER GRID	0.25	0.50		
4.A.2.00631.6.0	A.2.00631.R	04/05/2001	CRATER GRID	0.25	0.50		
4.A.2.00631.7.0	A.2.00631.R	04/05/2001	CRATER GRID	0.25	0.50		
4.A.2.00631.8.0	A.2.00631.R	04/05/2001	CRATER GRID	0.25	0.50		
4.A.2.00631.9.0	A.2.00631.R	04/05/2001	CRATER GRID	0.25	0.50		
4.A.2.00632.1.0	A.2.00632.R	04/04/2001	CRATER GRID	0.75	1.00		
4.A.2.00632.10.0	A.2.00632.R	04/05/2001	CRATER GRID	0.75	1.00		
4.A.2.00632.2.0	A.2.00632.R	04/04/2001	CRATER GRID	0.75	1.00		
4.A.2.00632.3.0	A.2.00632.R	04/04/2001	CRATER GRID	0.75	1.00		
4.A.2.00632.4.0	A.2.00632.R	04/04/2001	CRATER GRID	0.75	1.00		
4.A.2.00632.5.0	A.2.00632.R	04/04/2001	CRATER GRID	0.75	1.00		
4.A.2.00632.6.0	A.2.00632.R	04/05/2001	CRATER GRID	0.75	1.00		
4.A.2.00632.6.D	A.2.00632.R	04/05/2001	CRATER GRID	0.75	1.00		
4.A.2.00632.7.0	A.2.00632.R	04/05/2001	CRATER GRID	0.75	1.00		
4.A.2.00632.8.0	A.2.00632.R	04/05/2001	CRATER GRID	0.75	1.00		
4.A.2.00632.9.0	A.2.00632.R	04/05/2001	CRATER GRID	0.75	1.00		
HDP19105MM5SS13	P19105MM5SS13	04/04/2001	CRATER GRID	0.00	0.25		
0.G.0.00069.0.T	Trip Blank 69	04/05/2001	FIELDQC				
0.G.0.00070.0.T	Trip Blank 70	04/05/2001	FIELDQC				
G162DAE	FIELDQC	04/02/2001	FIELDQC	0.00	0.00		
G162DCE	FIELDQC	04/03/2001	FIELDQC	0.00	0.00		
G164DAE	FIELDQC	04/04/2001	FIELDQC	0.00	0.00		
G164DCE	FIELDQC	04/05/2001	FIELDQC	0.00	0.00		
G164DCT	FIELDQC	04/05/2001	FIELDQC	0.00	0.00		
G164DGT	FIELDQC	04/06/2001	FIELDQC	0.00	0.00		
HC61N1AAE	FIELDQC	04/06/2001	FIELDQC	0.00	0.00		
HD130AE1AAE	FIELDQC	04/03/2001	FIELDQC	0.00	0.00		
HD130R1AAT	FIELDQC	04/03/2001	FIELDQC	0.00	0.00		
HD130S1AAE	FIELDQC	04/04/2001	FIELDQC	0.00	0.00		
HD130S1AAT	FIELDQC	04/04/2001	FIELDQC	0.00	0.00		
HD132E5AAE	FIELDQC	04/02/2001	FIELDQC	0.00	0.00		
HD132E5AAT	FIELDQC	04/02/2001	FIELDQC	0.00	0.00		

Profiling methods include: Volatiles and Explosives

Groundwater methods include: Volatiles, Semivolatiles, Explosives, Pesticides, Herbicides, Metals, and Wet Chemistry Other Sample Types methods are variable

SBD = Sample Begin Depth, measured in feet bgs

SED = Sample End Depth, measured in feet bgs

BWTS = Depth below water table, start depth, measured in feet

OGDEN_ID	LOCID OR WELL ID	DATE SAMPLED	SAMPLE TYPE	SBD	SED	BWTS	BWTE
HD134A1AAE	FIELDQC	04/05/2001	FIELDQC	0.00	0.00		
HDP19105MM5SS13E	FIELDQC	04/04/2001	FIELDQC	0.00	0.00		
SC16001E	FIELDQC	04/06/2001	FIELDQC	0.00	0.00		
W90PZ0204E	FIELDQC	04/02/2001	FIELDQC	0.00	0.00		
4.D.2.00633.2.0	D.2.00633.O	04/05/2001	GAUZE WIPE	1.00	1.25		
4.D.2.00633.3.0	D.2.00633.O	04/05/2001	GAUZE WIPE	1.00	1.25		
W153M2A	MW-153	04/06/2001	GROUNDWATER	144.00	154.00	49.80	59.80
W90PZ0204A	90PZ0204	04/02/2001	GROUNDWATER	71.20	76.20	64.90	69.90
PWPPC31MR1A	RRA CONTAINMENT	03/31/2001	IDW				
PWPPC31MR1A	RRA CONTAINMENT	04/02/2001	IDW				
SC14901	SOIL CUTTINGS	04/06/2001	IDW	0.00	0.25		
SC14902	SOIL CUTTINGS	04/06/2001	IDW	0.00	0.25		
SC15001	SOIL CUTTINGS	04/06/2001	IDW	0.00	0.25		
SC15002	SOIL CUTTINGS	04/06/2001	IDW	0.00	0.25		
SC15101	SOIL CUTTINGS	04/06/2001	IDW	0.00	0.25		
SC15102	SOIL CUTTINGS	04/06/2001	IDW	0.00	0.25		
SC15301	SOIL CUTTINGS	04/06/2001	IDW	0.00	0.25		
SC15302	SOIL CUTTINGS	04/06/2001	IDW	0.00	0.25		
SC15501	SOIL CUTTINGS	04/06/2001	IDW	0.00	0.25		
SC15502	SOIL CUTTINGS	04/06/2001	IDW	0.00	0.25		
SC15601	SOIL CUTTINGS	04/06/2001	IDW	0.00	0.25		
SC15602	SOIL CUTTINGS	04/06/2001	IDW	0.00	0.25		
SC15701	SOIL CUTTINGS	04/06/2001	IDW	0.00	0.25		
SC15702	SOIL CUTTINGS	04/06/2001	IDW	0.00	0.25		
SC16001	SOIL CUTTINGS	04/06/2001	IDW	0.00	0.25		
SC16002	SOIL CUTTINGS	04/06/2001	IDW	0.00	0.25		
SC16101	SOIL CUTTINGS	04/06/2001	IDW	0.00	0.25		
SC16102	SOIL CUTTINGS	04/06/2001	IDW	0.00	0.25		
SC16201	SOIL CUTTINGS	04/06/2001	IDW	0.00	0.25		
SC16202	SOIL CUTTINGS	04/06/2001	IDW	0.00	0.25		
G162DAA	MW-162	04/02/2001	PROFILE	90.00	90.00	14.50	14.50
G162DBA	MW-162	04/02/2001	PROFILE	100.00	100.00	24.50	24.50
G162DCA	MW-162	04/03/2001	PROFILE	110.00	110.00	34.50	34.50
G162DCD	MW-162	04/03/2001	PROFILE	110.00	110.00	34.50	34.50
G162DDA	MW-162	04/03/2001	PROFILE	120.00	120.00	44.50	44.50
G162DEA	MW-162	04/03/2001	PROFILE	130.00	130.00	54.50	54.50
G162DFA	MW-162	04/03/2001	PROFILE	140.00	140.00	64.50	64.50
G162DGA	MW-162	04/03/2001	PROFILE	150.00	150.00	74.50	74.50
G162DHA	MW-162	04/03/2001	PROFILE	160.00	160.00	84.50	84.50
G162DIA	MW-162	04/03/2001	PROFILE	170.00	170.00	94.50	94.50
G162DJA	MW-162	04/03/2001	PROFILE	180.00	180.00	104.50	104.50
G162DKA	MW-162	04/03/2001	PROFILE	190.00	190.00	114.50	114.50
G162DLA	MW-162	04/03/2001	PROFILE	200.00	200.00		
G162DMA	MW-162	04/03/2001	PROFILE	210.00	210.00		

Profiling methods include: Volatiles and Explosives

Groundwater methods include: Volatiles, Semivolatiles, Explosives, Pesticides, Herbicides, Metals, and Wet Chemistry Other Sample Types methods are variable

SBD = Sample Begin Depth, measured in feet bgs

SED = Sample End Depth, measured in feet bgs

BWTS = Depth below water table, start depth, measured in feet

OGDEN_ID	LOCID OR WELL ID	DATE SAMPLED	SAMPLE TYPE	SBD	SED	BWTS	BWTE
G164DAA	MW-164	04/04/2001	PROFILE	120.00	120.00	4.00	4.00
G164DBA	MW-164	04/04/2001	PROFILE	130.00	130.00	14.00	24.00
G164DCA	MW-164	04/05/2001	PROFILE	140.00	140.00	24.00	24.00
G164DCD	MW-164	04/05/2001	PROFILE	140.00	140.00	24.00	24.00
G164DDA	MW-164	04/05/2001	PROFILE	150.00	150.00	34.00	34.00
G164DEA	MW-164	04/05/2001	PROFILE	160.00	160.00	44.00	44.00
G164DFA	MW-164	04/05/2001	PROFILE	170.00	170.00	54.00	54.00
G164DFD	MW-164	04/05/2001	PROFILE	170.00	170.00	54.00	54.00
G164DGA	MW-164	04/05/2001	PROFILE	180.00	180.00	64.00	64.00
G164DHA	MW-164	04/05/2001	PROFILE	190.00	190.00	74.00	74.00
G164DIA	MW-164	04/05/2001	PROFILE	200.00	200.00	84.00	84.00
G164DJA	MW-164	04/05/2001	PROFILE	210.00	210.00	94.00	94.00
G164DKA	MW-164	04/05/2001	PROFILE	220.00	220.00	104.00	104.00
G164DLA	MW-164	04/05/2001	PROFILE	230.00	230.00	114.00	114.00
4.D.2.00633.1.0	D.2.00633.O	04/05/2001	SOIL BRUSHING	1.00	1.25		
3.F.C.00001.0.0	Test Plot 3 Surface G	04/03/2001	SOIL GRID	0.00	0.25		
3.F.C.00001.1.0	Test Plot 3 Lift 1 Grid	04/03/2001	SOIL GRID	0.25	0.50		
3.F.C.00001.2.0	Test Plot 3 Lift 2 Grid	04/03/2001	SOIL GRID	0.50	1.00		
3.F.C.00002.0.0	Test Plot 3 Surface G	04/03/2001	SOIL GRID	0.00	0.25		
3.F.C.00002.1.0	Test Plot 3 Lift 1 Grid	04/03/2001	SOIL GRID	0.25	0.50		
3.F.C.00002.2.0	Test Plot 3 Lift 2 Grid	04/03/2001	SOIL GRID	0.50	1.00		
3.F.C.00007.0.0	Test Plot 3 Surface G	04/03/2001	SOIL GRID	0.00	0.25		
3.F.C.00007.1.0	Test Plot 3 Lift 1 Grid	04/03/2001	SOIL GRID	0.25	0.50		
3.F.C.00007.2.0	Test Plot 3 Lift 2 Grid	04/03/2001	SOIL GRID	0.50	1.00		
3.F.C.00010.0.0	Test Plot 3 Surface G	04/03/2001	SOIL GRID	0.00	0.25		
3.F.C.00010.0.D	Test Plot 3 Surface G	04/03/2001	SOIL GRID	0.00	0.25		
3.F.C.00010.1.0	Test Plot 3 Lift 1 Grid	04/03/2001	SOIL GRID	0.25	0.50		
3.F.C.00010.2.0	Test Plot 3 Lift 2 Grid	04/03/2001	SOIL GRID	0.50	1.00		
3.F.C.00015.0.0	Test Plot 3 Surface G	04/03/2001	SOIL GRID	0.00	0.25		
3.F.C.00015.1.0	Test Plot 3 Lift 1 Grid	04/03/2001	SOIL GRID	0.25	0.50		
3.F.C.00015.2.0	Test Plot 3 Lift 2 Grid	04/03/2001	SOIL GRID	0.50	1.00		
3.F.C.00016.0.0	Test Plot 3 Surface G	04/03/2001	SOIL GRID	0.00	0.25		
3.F.C.00016.1.0	Test Plot 3 Lift 1 Grid	04/03/2001	SOIL GRID	0.25	0.50		
3.F.C.00016.2.0	Test Plot 3 Lift 2 Grid	04/03/2001	SOIL GRID	0.50	1.00		
5.F.C.00001.0.0	Test Plot 5 Surface G	04/03/2001	SOIL GRID	0.00	0.25		
5.F.C.00001.1.0	Test Plot 5 Lift 1 Grid	04/03/2001	SOIL GRID	0.25	0.50		
5.F.C.00001.1.D	Test Plot 5 Lift 1 Grid	04/03/2001	SOIL GRID	0.25	0.50		
5.F.C.00001.2.0	Test Plot 5 Lift 2 Grid	04/03/2001	SOIL GRID	0.50	1.00		
5.F.C.00002.0.0	Test Plot 5 Surface G	04/03/2001	SOIL GRID	0.00	0.25		
5.F.C.00002.1.0	Test Plot 5 Lift 1 Grid	04/03/2001	SOIL GRID	0.25	0.50		
5.F.C.00002.2.0	Test Plot 5 Lift 2 Grid	04/03/2001	SOIL GRID	0.50	1.00		
5.F.C.00007.0.0	Test Plot 5 Surface G	04/03/2001	SOIL GRID	0.00	0.25		
5.F.C.00007.1.0	Test Plot 5 Lift 1 Grid	04/03/2001	SOIL GRID	0.25	0.50		
5.F.C.00007.2.0	Test Plot 5 Lift 2 Grid	04/03/2001	SOIL GRID	0.50	1.00		

Profiling methods include: Volatiles and Explosives

Groundwater methods include: Volatiles, Semivolatiles, Explosives, Pesticides, Herbicides, Metals, and Wet Chemistry Other Sample Types methods are variable

SBD = Sample Begin Depth, measured in feet bgs

SED = Sample End Depth, measured in feet bgs

BWTS = Depth below water table, start depth, measured in feet

OGDEN_ID	LOCID OR WELL ID	DATE SAMPLED	SAMPLE TYPE	SBD	SED	BWTS	BWTE
5.F.C.00010.0.0	Test Plot 5 Surface G	04/03/2001	SOIL GRID	0.00	0.25		
5.F.C.00010.1.0	Test Plot 5 Lift 1 Grid	04/03/2001	SOIL GRID	0.25	0.50		
5.F.C.00010.2.0	Test Plot 5 Lift 2 Grid	04/03/2001	SOIL GRID	0.50	1.00		
5.F.C.00010.2.D	Test Plot 5 Lift 2 Grid	04/03/2001	SOIL GRID	0.50	1.00		
5.F.C.00015.0.0	Test Plot 5 Surface G	04/03/2001	SOIL GRID	0.00	0.25		
5.F.C.00015.1.0	Test Plot 5 Lift 1 Grid	04/03/2001	SOIL GRID	0.25	0.50		
5.F.C.00015.2.0	Test Plot 5 Lift 2 Grid	04/03/2001	SOIL GRID	0.50	1.00		
5.F.C.00016.0.0	Test Plot 5 Surface G	04/03/2001	SOIL GRID	0.00	0.25		
5.F.C.00016.1.0	Test Plot 5 Lift 1 Grid	04/03/2001	SOIL GRID	0.25	0.50		
5.F.C.00016.2.0	Test Plot 5 Lift 2 Grid	04/03/2001	SOIL GRID	0.50	1.00		
5.F.C.00016.2.D	Test Plot 5 Lift 2 Grid	04/04/2001	SOIL GRID	0.50	1.00		
HC130AE1AAA	130AE	04/03/2001	SOIL GRID	0.00	0.25		
HC130AE1BAA	130AE	04/03/2001	SOIL GRID	0.25	0.50		
HC130AE1CAA	130AE	04/03/2001	SOIL GRID	0.50	1.00		
HC130AE1CAD	130AE	04/03/2001	SOIL GRID	0.50	1.00		
HC130AF1AAA	130AF	04/03/2001	SOIL GRID	0.00	0.25		
HC130AF1BAA	130AF	04/03/2001	SOIL GRID	0.25	0.50		
HC130AF1CAA	130AF	04/03/2001	SOIL GRID	0.50	1.00		
HC130AF1CAD	130AF	04/03/2001	SOIL GRID	0.50	1.00		
HC130AG1AAA	130AG	04/04/2001	SOIL GRID	0.00	0.25		
HC130AG1BAA	130AG	04/04/2001	SOIL GRID	0.25	0.50		
HC130AG1CAA	130AG	04/04/2001	SOIL GRID	0.50	1.00		
HC130AH1AAA	130AH	04/04/2001	SOIL GRID	0.00	0.25		
HC130AH1BAA	130AH	04/04/2001	SOIL GRID	0.25	0.50		
HC130AH1CAA	130AH	04/04/2001	SOIL GRID	0.50	1.00		
HC130R1AAA	130R	04/02/2001	SOIL GRID	0.00	0.25		
HC130R1BAA	130R	04/02/2001	SOIL GRID	0.25	0.50		
HC130R1CAA	130R	04/02/2001	SOIL GRID	0.50	1.00		
HC130R1CAD	130R	04/02/2001	SOIL GRID	0.50	1.00		
HC130S1AAA	130S	04/04/2001	SOIL GRID	0.00	0.25		
HC130S1BAA	130S	04/04/2001	SOIL GRID	0.25	0.50		
HC130S1CAA	130S	04/04/2001	SOIL GRID	0.50	1.00		
HC130T1AAA	130T	04/03/2001	SOIL GRID	0.00	0.25		
HC130T1BAA	130T	04/03/2001	SOIL GRID	0.25	0.50		
HC130T1CAA	130T	04/03/2001	SOIL GRID	0.50	1.00		
HC130U1AAA	130U	04/03/2001	SOIL GRID	0.00	0.25		
HC130U1BAA	130U	04/03/2001	SOIL GRID	0.25	0.50		
HC130U1CAA	130U	04/03/2001	SOIL GRID	0.50	1.00		
HC130U1CAD	130U	04/03/2001	SOIL GRID	0.50	1.00		
HC130V1AAA	130V	04/03/2001	SOIL GRID	0.00	0.25		
HC130V1BAA	130V	04/03/2001	SOIL GRID	0.25	0.50		
HC130V1CAA	130V	04/03/2001	SOIL GRID	0.50	1.00		
HC130W1AAA	130W	04/03/2001	SOIL GRID	0.00	0.25		
HC130W1BAA	130W	04/03/2001	SOIL GRID	0.25	0.50		

Profiling methods include: Volatiles and Explosives

Groundwater methods include: Volatiles, Semivolatiles, Explosives, Pesticides, Herbicides, Metals, and Wet Chemistry Other Sample Types methods are variable

SBD = Sample Begin Depth, measured in feet bgs

SED = Sample End Depth, measured in feet bgs

BWTS = Depth below water table, start depth, measured in feet

OGDEN_ID	LOCID OR WELL ID	DATE SAMPLED	SAMPLE TYPE	SBD	SED	BWTS	BWTE
HC130W1CAA	130W	04/03/2001	SOIL GRID	0.50	1.00		
HC130W1CAD	130W	04/03/2001	SOIL GRID	0.50	1.00		
HC130X1AAA	130X	04/03/2001	SOIL GRID	0.00	0.25		
HC130X1BAA	130X	04/03/2001	SOIL GRID	0.25	0.50		
HC130X1CAA	130X	04/03/2001	SOIL GRID	0.50	1.00		
HC130X1CAD	130X	04/03/2001	SOIL GRID	0.50	1.00		
HC133S1AAA	133S	04/05/2001	SOIL GRID	0.00	0.25		
HC133S1BAA	133S	04/05/2001	SOIL GRID	0.25	0.50		
HC133S1CAA	133S	04/05/2001	SOIL GRID	0.50	1.00		
HC133S1CAD	133S	04/05/2001	SOIL GRID	0.50	1.00		
HC133T1AAA	133T	04/05/2001	SOIL GRID	0.00	0.25		
HC133T1BAA	133T	04/05/2001	SOIL GRID	0.25	0.50		
HC133T1CAA	133T	04/05/2001	SOIL GRID	0.50	1.00		
HC133U1AAA	133U	04/05/2001	SOIL GRID	0.00	0.25		
HC133U1BAA	133U	04/05/2001	SOIL GRID	0.25	0.50		
HC133U1CAA	133U	04/05/2001	SOIL GRID	0.50	1.00		
HC134A1AAA	134A	04/05/2001	SOIL GRID	0.00	0.25		
HC134A1BAA	134A	04/05/2001	SOIL GRID	0.25	0.50		
HC134A1CAA	134A	04/05/2001	SOIL GRID	0.50	1.00		
HC134A1CAD	134A	04/05/2001	SOIL GRID	0.50	1.00		
HC134B1AAA	134B	04/05/2001	SOIL GRID	0.00	0.25		
HC134B1BAA	134B	04/05/2001	SOIL GRID	0.25	0.50		
HC134B1CAA	134B	04/05/2001	SOIL GRID	0.50	1.00		
HC61M1AAA	61M	04/06/2001	SOIL GRID	0.00	0.50		
HC61M1BAA	61M	04/06/2001	SOIL GRID	1.50	2.00		
HC61M1BAD	61M	04/06/2001	SOIL GRID	1.50	2.00		
HC61N1AAA	61N	04/06/2001	SOIL GRID	0.00	0.50		
HC61N1BAA	61N	04/06/2001	SOIL GRID	1.50	2.00		
HC61N1BAD	61N	04/06/2001	SOIL GRID	1.50	2.00		
HC61O1AAA	610	04/06/2001	SOIL GRID	0.00	2.25		
HC61P1AAA	61P	04/06/2001	SOIL GRID	0.00	2.50		
HC61Q1AAA	61Q	04/06/2001	SOIL GRID	0.00	2.00		
HD130AE1AAA	130AE	04/03/2001	SOIL GRID	0.00	0.25		
HD130AE1BAA	130AE	04/03/2001	SOIL GRID	0.25	0.50		
HD130AE1CAA	130AE	04/03/2001	SOIL GRID	0.50	1.00		
HD130AF1AAA	130AF	04/03/2001	SOIL GRID	0.00	0.25		
HD130AF1BAA	130AF	04/03/2001	SOIL GRID	0.25	0.50		
HD130AF1CAA	130AF	04/03/2001	SOIL GRID	0.50	1.00		
HD130AG1AAA	130AG	04/04/2001	SOIL GRID	0.00	0.25		
HD130AG1BAA	130AG	04/04/2001	SOIL GRID	0.25	0.50		
HD130AG1CAA	130AG	04/04/2001	SOIL GRID	0.50	1.00		
HD130AH1AAA	130AH	04/04/2001	SOIL GRID	0.00	0.25		
HD130AH1BAA	130AH	04/04/2001	SOIL GRID	0.25	0.50		
HD130AH1CAA	130AH	04/04/2001	SOIL GRID	0.50	1.00		

Profiling methods include: Volatiles and Explosives

Groundwater methods include: Volatiles, Semivolatiles, Explosives, Pesticides, Herbicides, Metals, and Wet Chemistry Other Sample Types methods are variable

SBD = Sample Begin Depth, measured in feet bgs

SED = Sample End Depth, measured in feet bgs

BWTS = Depth below water table, start depth, measured in feet

OGDEN_ID	LOCID OR WELL ID	DATE SAMPLED	SAMPLE TYPE	SBD	SED	BWTS	BWTE
HD130R1AAA	130R	04/02/2001	SOIL GRID	0.00	0.25		
HD130R1BAA	130R	04/02/2001	SOIL GRID	0.25	0.50		
HD130R1CAA	130R	04/02/2001	SOIL GRID	0.50	1.00		
HD130S1AAA	130S	04/04/2001	SOIL GRID	0.00	0.25		
HD130S1BAA	130S	04/04/2001	SOIL GRID	0.25	0.50		
HD130S1CAA	130S	04/04/2001	SOIL GRID	0.50	1.00		
HD130T1AAA	130T	04/03/2001	SOIL GRID	0.00	0.25		
HD130T1BAA	130T	04/03/2001	SOIL GRID	0.25	0.50		
HD130T1CAA	130T	04/03/2001	SOIL GRID	0.50	1.00		
HD130U1AAA	130U	04/03/2001	SOIL GRID	0.00	0.25		
HD130U1BAA	130U	04/03/2001	SOIL GRID	0.25	0.50		
HD130U1CAA	130U	04/03/2001	SOIL GRID	0.50	1.00		
HD130V1AAA	130V	04/03/2001	SOIL GRID	0.00	0.25		
HD130V1BAA	130V	04/03/2001	SOIL GRID	0.25	0.50		
HD130V1CAA	130V	04/03/2001	SOIL GRID	0.50	1.00		
HD130W1AAA	130W	04/03/2001	SOIL GRID	0.00	0.25		
HD130W1BAA	130W	04/03/2001	SOIL GRID	0.25	0.50		
HD130W1CAA	130W	04/03/2001	SOIL GRID	0.50	1.00		
HD130X1AAA	130X	04/03/2001	SOIL GRID	0.00	0.25		
HD130X1BAA	130X	04/03/2001	SOIL GRID	0.25	0.50		
HD130X1CAA	130X	04/03/2001	SOIL GRID	0.50	1.00		
HD132E1AAA	132E	04/02/2001	SOIL GRID	0.00	0.25		
HD132E1BAA	132E	04/02/2001	SOIL GRID	0.25	0.50		
HD132E1CAA	132E	04/02/2001	SOIL GRID	0.50	1.00		
HD132E2AAA	132E	04/02/2001	SOIL GRID	0.00	0.25		
HD132E2BAA	132E	04/02/2001	SOIL GRID	0.25	0.50		
HD132E2CAA	132E	04/02/2001	SOIL GRID	0.50	1.00		
HD132E4AAA	132E	04/02/2001	SOIL GRID	0.25	0.50		
HD132E4BAA	132E	04/02/2001	SOIL GRID	0.00	0.25		
HD132E4CAA	132E	04/02/2001	SOIL GRID	0.50	1.00		
HD132E5AAA	132E	04/02/2001	SOIL GRID	0.00	0.25		
HD132E5BAA	132E	04/02/2001	SOIL GRID	0.25	0.50		
HD132E5BAD	132E	04/02/2001	SOIL GRID	0.25	0.50		
HD132E5CAA	132E	04/02/2001	SOIL GRID	0.50	1.00		
HD134A1AAA	134A	04/05/2001	SOIL GRID	0.00	0.25		
HD134A1BAA	134A	04/05/2001	SOIL GRID	0.25	0.50		
HD134A1CAA	134A	04/05/2001	SOIL GRID	0.50	1.00		
HD134B1AAA	134B	04/05/2001	SOIL GRID	0.00	0.25		
HD134B1BAA	134B	04/05/2001	SOIL GRID	0.25	0.50		
HD134B1CAA	134B	04/05/2001	SOIL GRID	0.50	1.00		
HD61M1AAA	61M	04/06/2001	SOIL GRID	0.00	0.50		
HD61M1BAA	61M	04/06/2001	SOIL GRID	1.50	2.00		
HD61N1AAA	61N	04/06/2001	SOIL GRID	0.00	0.50		
HD61N1BAA	61N	04/06/2001	SOIL GRID	1.50	2.00		

Profiling methods include: Volatiles and Explosives

Groundwater methods include: Volatiles, Semivolatiles, Explosives, Pesticides, Herbicides, Metals, and Wet Chemistry Other Sample Types methods are variable

SBD = Sample Begin Depth, measured in feet bgs

SED = Sample End Depth, measured in feet bgs

BWTS = Depth below water table, start depth, measured in feet

OGDEN_ID	LOCID OR WELL ID	SAMPLED	SAMP_TYPE	SBD	SED	BWTS	BWTE	METHOD	OGDEN_ANALYTE	PDA
HC79IB1AAE	FIELDQC	03/26/2001	FIELDQC	0.00	0.00			IM40PB	LEAD	
W153M1A	MW-153	03/23/2001	GROUNDWATE	200.00	210.00	105.53	115.53	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,	YES
PWPPC24MR1A	RRA CONTAINMENT	03/24/2001	IDW					8330N	HEXAHYDRO-1,3,5-TRINITRO-1,	YES
PWPPC24MR1A	RRA CONTAINMENT	03/24/2001	IDW					IM40MB	IRON	
PWPPC24MR1A	RRA CONTAINMENT	03/24/2001	IDW					IM40MB	MANGANESE	
PWPPC24MR1A	RRA CONTAINMENT	03/24/2001	IDW					IM40MB	ZINC	
PWPPC27MR1A	RRA CONTAINMENT	03/27/2001	IDW					8330N	HEXAHYDRO-1,3,5-TRINITRO-1,	YES
PWPPC27MR1A	RRA CONTAINMENT	03/27/2001	IDW					IM40MB	ALUMINUM	
PWPPC27MR1A	RRA CONTAINMENT	03/27/2001	IDW					IM40MB	BARIUM	
PWPPC27MR1A	RRA CONTAINMENT	03/27/2001	IDW					IM40MB	BORON	
PWPPC27MR1A	RRA CONTAINMENT	03/27/2001	IDW					IM40MB	CADMIUM	
PWPPC27MR1A	RRA CONTAINMENT	03/27/2001	IDW					IM40MB	CALCIUM	
PWPPC27MR1A	RRA CONTAINMENT	03/27/2001	IDW					IM40MB	IRON	
PWPPC27MR1A	RRA CONTAINMENT	03/27/2001	IDW					IM40MB	LEAD	
PWPPC27MR1A	RRA CONTAINMENT	03/27/2001	IDW					IM40MB	MAGNESIUM	
PWPPC27MR1A	RRA CONTAINMENT	03/27/2001	IDW					IM40MB	MANGANESE	
PWPPC27MR1A	RRA CONTAINMENT	03/27/2001	IDW					IM40MB	NICKEL	
PWPPC27MR1A	RRA CONTAINMENT	03/27/2001	IDW					IM40MB	POTASSIUM	
PWPPC27MR1A	RRA CONTAINMENT	03/27/2001	IDW					IM40MB	SODIUM	
PWPPC27MR1A	RRA CONTAINMENT	03/27/2001	IDW					IM40MB	ZINC	
G162DAA	MW-162	04/02/2001	PROFILE	90.00	90.00	14.50	14.50	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,	NO
G162DAA	MW-162	04/02/2001	PROFILE	90.00	90.00	14.50	14.50	8330N	NITROGLYCERIN	NO
G162DAA	MW-162	04/02/2001	PROFILE	90.00	90.00	14.50	14.50	8330N	PICRIC ACID	NO
G162DBA	MW-162	04/02/2001	PROFILE	100.00	100.00	24.50	24.50	8330N	PICRIC ACID	NO
G162DCA	MW-162	04/03/2001	PROFILE	110.00	110.00	34.50	34.50	8330N	NITROGLYCERIN	NO
G162DCA	MW-162	04/03/2001	PROFILE	110.00	110.00	34.50	34.50	8330N	PICRIC ACID	NO
G162DEA	MW-162	04/03/2001	PROFILE	130.00	130.00	54.50	54.50	8330N	PICRIC ACID	NO
G164DAA	MW-164	04/04/2001	PROFILE	120.00	120.00	4.00	4.00	8330N	2,6-DIAMINO-4-NITROTOLUENE	NO
G164DAA	MW-164	04/04/2001	PROFILE	120.00	120.00	4.00	4.00	8330N	3-NITROTOLUENE	YES
G164DAA	MW-164	04/04/2001	PROFILE	120.00	120.00	4.00	4.00	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,	YES
G164DAA	MW-164	04/04/2001	PROFILE	120.00	120.00	4.00	4.00	OC21V	1,1-DICHLOROETHENE	
G164DAA	MW-164	04/04/2001	PROFILE	120.00	120.00	4.00	4.00	OC21V	2-HEXANONE	
G164DAA	MW-164	04/04/2001	PROFILE	120.00	120.00	4.00	4.00	OC21V	CHLOROFORM	

DATA REPORTED REFLECT CURRENT DATABASE FOR SAMPLES COLLECTED IN SPECIFIED TIMEFRAME. NOT ALL RESULTS ARE COMPLETE. SBD = SAMPLE COLLECTION BEGIN DEPTH IN FEET BGS SED = SAMPLE COLLECTION END DEPTH IN FEET BGS BWTS = DEPTH BELOW WATER TABLE, START DEPTH, MEASURED IN FEET BWTE = DEPTH BELOW WATER TABLE, END DEPTH, MEASURED IN FEET PDA/YES = Photo Diode Array, Detect Confirmed PDA/NO = Photo Diode Array, Detect Not Confirmed

OGDEN_ID	LOCID OR WELL ID	SAMPLED	SAMP_TYPE	SBD	SED	BWTS	BWTE	METHOD	OGDEN_ANALYTE	PDA
G164DAA	MW-164	04/04/2001	PROFILE	120.00	120.00	4.00	4.00	OC21V	CHLOROMETHANE	
G164DAA	MW-164	04/04/2001	PROFILE	120.00	120.00	4.00	4.00	OC21V	METHYL ETHYL KETONE (2-BU1	
G164DBA	MW-164	04/04/2001	PROFILE	130.00	130.00	14.00	24.00	8330N	2,6-DINITROTOLUENE	NO
G164DBA	MW-164	04/04/2001	PROFILE	130.00	130.00	14.00	24.00	8330N	2-AMINO-4,6-DINITROTOLUENE	NO
G164DBA	MW-164	04/04/2001	PROFILE	130.00	130.00	14.00	24.00	8330N	3-NITROTOLUENE	YES
G164DBA	MW-164	04/04/2001	PROFILE	130.00	130.00	14.00	24.00	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,	YES
G164DBA	MW-164	04/04/2001	PROFILE	130.00	130.00	14.00	24.00	8330N	NITROBENZENE	NO
G164DBA	MW-164	04/04/2001	PROFILE	130.00	130.00	14.00	24.00	8330N	NITROGLYCERIN	NO
G164DBA	MW-164	04/04/2001	PROFILE	130.00	130.00	14.00	24.00	8330N	PICRIC ACID	NO
G164DBA	MW-164	04/04/2001	PROFILE	130.00	130.00	14.00	24.00	OC21V	ACETONE	
G164DBA	MW-164	04/04/2001	PROFILE	130.00	130.00	14.00	24.00	OC21V	METHYL ETHYL KETONE (2-BU1	
G164DCA	MW-164	04/05/2001	PROFILE	140.00	140.00	24.00	24.00	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,	YES
G164DCA	MW-164	04/05/2001	PROFILE	140.00	140.00	24.00	24.00	OC21V	ACETONE	
G164DCA	MW-164	04/05/2001	PROFILE	140.00	140.00	24.00	24.00	OC21V	METHYL ETHYL KETONE (2-BU1	
G164DCD	MW-164	04/05/2001	PROFILE	140.00	140.00	24.00	24.00	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,	YES
G164DCD	MW-164	04/05/2001	PROFILE	140.00	140.00	24.00	24.00	OC21V	ACETONE	
G164DCD	MW-164	04/05/2001	PROFILE	140.00	140.00	24.00	24.00	OC21V	METHYL ETHYL KETONE (2-BU1	
G164DDA	MW-164	04/05/2001	PROFILE	150.00	150.00	34.00	34.00	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,	YES
G164DDA	MW-164	04/05/2001	PROFILE	150.00	150.00	34.00	34.00	OC21V	ACETONE	
G164DEA	MW-164	04/05/2001	PROFILE	160.00	160.00	44.00	44.00	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,	YES
G164DEA	MW-164	04/05/2001	PROFILE	160.00	160.00	44.00	44.00	8330N	OCTAHYDRO-1,3,5,7-TETRANIT	YES
G164DEA	MW-164	04/05/2001	PROFILE	160.00	160.00	44.00	44.00	OC21V	ACETONE	
G164DEA	MW-164	04/05/2001	PROFILE	160.00	160.00	44.00	44.00	OC21V	METHYL ETHYL KETONE (2-BU1	
G164DFA	MW-164	04/05/2001	PROFILE	170.00	170.00	54.00	54.00	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,	YES
G164DFA	MW-164	04/05/2001	PROFILE	170.00	170.00	54.00	54.00	8330N	OCTAHYDRO-1,3,5,7-TETRANIT	YES
G164DFA	MW-164	04/05/2001	PROFILE	170.00	170.00	54.00	54.00	OC21V	ACETONE	
G164DFA	MW-164	04/05/2001	PROFILE	170.00	170.00	54.00	54.00	OC21V	METHYL ETHYL KETONE (2-BU1	
G164DFD	MW-164	04/05/2001	PROFILE	170.00	170.00	54.00	54.00	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,	YES
G164DFD	MW-164	04/05/2001	PROFILE	170.00	170.00	54.00	54.00	8330N	OCTAHYDRO-1,3,5,7-TETRANIT	YES
G164DFD	MW-164	04/05/2001	PROFILE	170.00	170.00	54.00	54.00	OC21V	ACETONE	
G164DFD	MW-164	04/05/2001	PROFILE	170.00	170.00	54.00	54.00	OC21V	METHYL ETHYL KETONE (2-BU1	
G164DGA	MW-164	04/05/2001	PROFILE	180.00	180.00	64.00	64.00	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,	YES
G164DGA	MW-164	04/05/2001	PROFILE	180.00	180.00	64.00	64.00	OC21V	ACETONE	

DATA REPORTED REFLECT CURRENT DATABASE FOR SAMPLES COLLECTED IN SPECIFIED TIMEFRAME. NOT ALL RESULTS ARE COMPLETE. SBD = SAMPLE COLLECTION BEGIN DEPTH IN FEET BGS SED = SAMPLE COLLECTION END DEPTH IN FEET BGS BWTS = DEPTH BELOW WATER TABLE, START DEPTH, MEASURED IN FEET BWTE = DEPTH BELOW WATER TABLE, END DEPTH, MEASURED IN FEET PDA/YES = Photo Diode Array, Detect Confirmed PDA/NO = Photo Diode Array, Detect Not Confirmed

OGDEN_ID	LOCID OR WELL ID	SAMPLED	SAMP_TYPE	SBD	SED	BWTS	BWTE	METHOD	OGDEN_ANALYTE	PDA
G164DHA	MW-164	04/05/2001	PROFILE	190.00	190.00	74.00	74.00	OC21V	ACETONE	
G164DIA	MW-164	04/05/2001	PROFILE	200.00	200.00	84.00	84.00	OC21V	ACETONE	
G164DIA	MW-164	04/05/2001	PROFILE	200.00	200.00	84.00	84.00	OC21V	METHYL ETHYL KETONE (2-BUT	
G164DJA	MW-164	04/05/2001	PROFILE	210.00	210.00	94.00	94.00	OC21V	ACETONE	
G164DJA	MW-164	04/05/2001	PROFILE	210.00	210.00	94.00	94.00	OC21V	CHLOROFORM	
G164DJA	MW-164	04/05/2001	PROFILE	210.00	210.00	94.00	94.00	OC21V	METHYL ETHYL KETONE (2-BUT	
G164DKA	MW-164	04/05/2001	PROFILE	220.00	220.00	104.00	104.00	OC21V	ACETONE	
G164DKA	MW-164	04/05/2001	PROFILE	220.00	220.00	104.00	104.00	OC21V	CHLOROFORM	
G164DKA	MW-164	04/05/2001	PROFILE	220.00	220.00	104.00	104.00	OC21V	METHYL ETHYL KETONE (2-BUT	
G164DLA	MW-164	04/05/2001	PROFILE	230.00	230.00	114.00	114.00	8330N	HEXAHYDRO-1,3,5-TRINITRO-1,	YES
G164DLA	MW-164	04/05/2001	PROFILE	230.00	230.00	114.00	114.00	OC21V	ACETONE	
G164DLA	MW-164	04/05/2001	PROFILE	230.00	230.00	114.00	114.00	OC21V	CHLOROFORM	
HD130M1BAD	130M	03/20/2001	SOIL GRID	0.25	0.50			8330N	PICRIC ACID	NO
HD130Q1AAA	130Q	03/21/2001	SOIL GRID	0.00	0.25			8330N	OCTAHYDRO-1,3,5,7-TETRANITI	YES
HC79HA1AAA	79HA	03/21/2001	SOIL GRID	0.00	0.50			IM40PB	LEAD	
HC79HA1AAA	79HA	03/21/2001	SOIL GRID	0.00	0.50			OM31P	DDE (1,1-BIS(CHLOROPHENYL)-	
HC79HA1AAA	79HA	03/21/2001	SOIL GRID	0.00	0.50			OM31P	DDT (1,1-BIS(CHLOROPHENYL)-	
HC79HA1AAA	79HA	03/21/2001	SOIL GRID	0.00	0.50			OM31P	DIELDRIN	
HC79HA1BAA	79HA	03/21/2001	SOIL GRID	0.50	1.00			IM40PB	LEAD	
HC79HA1BAD	79HA	03/21/2001	SOIL GRID	0.50	1.00			IM40PB	LEAD	
HC79HA1CAA	79HA	03/21/2001	SOIL GRID	1.00	1.50			IM40PB	LEAD	
HC79HA1DAA	79HA	03/21/2001	SOIL GRID	1.50	2.00			IM40PB	LEAD	
HC79HB1AAA	79HB	03/22/2001	SOIL GRID	0.00	0.50			IM40PB	LEAD	
HC79HB1AAA	79HB	03/22/2001	SOIL GRID	0.00	0.50			OM31P	DDT (1,1-BIS(CHLOROPHENYL)-	
HC79HB1AAA	79HB	03/22/2001	SOIL GRID	0.00	0.50			OM31P	DIELDRIN	
HC79HB1BAA	79HB	03/22/2001	SOIL GRID	0.50	1.00			IM40PB	LEAD	
HC79HB1CAA	79HB	03/22/2001	SOIL GRID	1.00	1.50			IM40PB	LEAD	
HC79HB1DAA	79HB	03/22/2001	SOIL GRID	1.50	2.00			IM40PB	LEAD	
HC79HC1AAA	79HC	03/21/2001	SOIL GRID	0.00	0.50			IM40PB	LEAD	
HC79HC1AAA	79HC	03/21/2001	SOIL GRID	0.00	0.50			OM31P	DDD (1,1-BIS(CHLOROPHENYL)	
HC79HC1AAA	79HC	03/21/2001	SOIL GRID	0.00	0.50			OM31P	DDE (1,1-BIS(CHLOROPHENYL)-	
HC79HC1BAA	79HC	03/21/2001	SOIL GRID	0.50	1.00			IM40PB	LEAD	
HC79HC1CAA	79HC	03/21/2001	SOIL GRID	1.00	1.50			IM40PB	LEAD	

DATA REPORTED REFLECT CURRENT DATABASE FOR SAMPLES COLLECTED IN SPECIFIED TIMEFRAME. NOT ALL RESULTS ARE COMPLETE. SBD = SAMPLE COLLECTION BEGIN DEPTH IN FEET BGS SED = SAMPLE COLLECTION END DEPTH IN FEET BGS BWTS = DEPTH BELOW WATER TABLE, START DEPTH, MEASURED IN FEET BWTE = DEPTH BELOW WATER TABLE, END DEPTH, MEASURED IN FEET PDA/YES = Photo Diode Array, Detect Confirmed PDA/NO = Photo Diode Array, Detect Not Confirmed

OGDEN_ID	LOCID OR WELL ID	SAMPLED	SAMP_TYPE	SBD	SED	BWTS	BWTE	METHOD	OGDEN_ANALYTE	PDA
HC79HC1DAA	79HC	03/21/2001	SOIL GRID	1.50	2.00			IM40PB	LEAD	
HC79HC1DAD	79HC	03/20/2001	SOIL GRID	1.50	2.00			IM40PB	LEAD	
HC79HD1AAA	79HD	03/20/2001	SOIL GRID	0.00	0.50			IM40PB	LEAD	
HC79HD1BAA	79HD	03/20/2001	SOIL GRID	0.50	1.00			IM40PB	LEAD	
HC79HD1CAA	79HD	03/20/2001	SOIL GRID	1.00	1.50			IM40PB	LEAD	
HC79HD1DAA	79HD	03/20/2001	SOIL GRID	1.50	2.00			IM40PB	LEAD	
HC79HE1AAA	79HE	03/20/2001	SOIL GRID	0.00	0.50			IM40PB	LEAD	
HC79HE1BAA	79HE	03/20/2001	SOIL GRID	0.50	1.00			IM40PB	LEAD	
HC79HE1CAA	79HE	03/20/2001	SOIL GRID	1.00	1.50			IM40PB	LEAD	
HC79HE1DAA	79HE	03/20/2001	SOIL GRID	1.50	2.00			IM40PB	LEAD	
HC79HF1AAA	79HF	03/20/2001	SOIL GRID	0.00	0.50			IM40PB	LEAD	
HC79HF1AAA	79HF	03/20/2001	SOIL GRID	0.00	0.50			OM31P	DDE (1,1-BIS(CHLOROPHENYL)-	
HC79HF1AAA	79HF	03/20/2001	SOIL GRID	0.00	0.50			OM31P	DDT (1,1-BIS(CHLOROPHENYL)-	
HC79HF1BAA	79HF	03/20/2001	SOIL GRID	0.50	1.00			IM40PB	LEAD	
HC79HF1CAA	79HF	03/20/2001	SOIL GRID	1.00	1.50			IM40PB	LEAD	
HC79HF1DAA	79HF	03/20/2001	SOIL GRID	1.50	2.00			IM40PB	LEAD	
HC79HF1DAA	79HF	03/20/2001	SOIL GRID	1.50	2.00			OM31P	DDT (1,1-BIS(CHLOROPHENYL)-	
HC79HF1DAA	79HF	03/20/2001	SOIL GRID	1.50	2.00			OM31P	DIELDRIN	
HC79HG1AAA	79HG	03/20/2001	SOIL GRID	0.00	0.50			IM40PB	LEAD	
HC79HG1AAA	79HG	03/20/2001	SOIL GRID	0.00	0.50			OM31P	DDE (1,1-BIS(CHLOROPHENYL)-	
HC79HG1AAA	79HG	03/20/2001	SOIL GRID	0.00	0.50			OM31P	DDT (1,1-BIS(CHLOROPHENYL)-	
HC79HG1AAA	79HG	03/20/2001	SOIL GRID	0.00	0.50			OM31P	DIELDRIN	
HC79HG1BAA	79HG	03/20/2001	SOIL GRID	0.50	1.00			IM40PB	LEAD	
HC79HG1BAA	79HG	03/20/2001	SOIL GRID	0.50	1.00			OM31P	DIELDRIN	
HC79HG1CAA	79HG	03/20/2001	SOIL GRID	1.00	1.50			IM40PB	LEAD	
HC79HG1CAA	79HG	03/20/2001	SOIL GRID	1.00	1.50			OM31P	DIELDRIN	
HC79HG1DAA	79HG	03/20/2001	SOIL GRID	1.50	2.00			IM40PB	LEAD	
HC79HG1DAA	79HG	03/20/2001	SOIL GRID	1.50	2.00			OM31P	DIELDRIN	
HC79HH1AAA	79HH	03/21/2001	SOIL GRID	0.00	0.50			IM40PB	LEAD	
HC79HH1AAA	79HH	03/21/2001	SOIL GRID	0.00	0.50			OM31P	DDE (1,1-BIS(CHLOROPHENYL)-	
HC79HH1AAA	79HH	03/21/2001	SOIL GRID	0.00	0.50			OM31P	DDT (1,1-BIS(CHLOROPHENYL)-	
HC79HH1AAA	79HH	03/21/2001	SOIL GRID	0.00	0.50			OM31P	DIELDRIN	
HC79HH1BAA	79HH	03/21/2001	SOIL GRID	0.50	1.00			IM40PB	LEAD	

DATA REPORTED REFLECT CURRENT DATABASE FOR SAMPLES COLLECTED IN SPECIFIED TIMEFRAME. NOT ALL RESULTS ARE COMPLETE. SBD = SAMPLE COLLECTION BEGIN DEPTH IN FEET BGS SED = SAMPLE COLLECTION END DEPTH IN FEET BGS BWTS = DEPTH BELOW WATER TABLE, START DEPTH, MEASURED IN FEET BWTE = DEPTH BELOW WATER TABLE, END DEPTH, MEASURED IN FEET PDA/YES = Photo Diode Array, Detect Confirmed PDA/NO = Photo Diode Array, Detect Not Confirmed

OGDEN_ID	LOCID OR WELL ID	SAMPLED	SAMP_TYPE	SBD	SED	BWTS	BWTE	METHOD	OGDEN_ANALYTE	PDA
НС79НН1ВАА	79HH	03/21/2001	SOIL GRID	0.50	1.00			OM31P	DDE (1,1-BIS(CHLOROPHENYL)-	
HC79HH1BAA	79HH	03/21/2001	SOIL GRID	0.50	1.00			OM31P	DDT (1,1-BIS(CHLOROPHENYL)-	
HC79HH1BAA	79HH	03/21/2001	SOIL GRID	0.50	1.00			OM31P	DIELDRIN	
HC79HH1CAA	79HH	03/21/2001	SOIL GRID	1.00	1.50			IM40PB	LEAD	
HC79HH1CAA	79HH	03/21/2001	SOIL GRID	1.00	1.50			OM31P	DDT (1,1-BIS(CHLOROPHENYL)-	
HC79HH1CAA	79HH	03/21/2001	SOIL GRID	1.00	1.50			OM31P	DIELDRIN	
HC79HH1CAD	79HH	03/21/2001	SOIL GRID	1.00	1.50			IM40PB	LEAD	
HC79HH1CAD	79HH	03/21/2001	SOIL GRID	1.00	1.50			OM31P	DDT (1,1-BIS(CHLOROPHENYL)-	
HC79HH1CAD	79HH	03/21/2001	SOIL GRID	1.00	1.50			OM31P	DIELDRIN	
HC79HH1DAA	79HH	03/21/2001	SOIL GRID	1.50	2.00			IM40PB	LEAD	
HC79IB1AAA	79IB	03/26/2001	SOIL GRID	0.00	0.50			IM40PB	LEAD	
HC79IB1AAA	79IB	03/26/2001	SOIL GRID	0.00	0.50			OM31P	DDE (1,1-BIS(CHLOROPHENYL)-	
HC79IB1AAA	79IB	03/26/2001	SOIL GRID	0.00	0.50			OM31P	DDT (1,1-BIS(CHLOROPHENYL)-	
HC79IB1AAA	79IB	03/26/2001	SOIL GRID	0.00	0.50			OM31P	DIELDRIN	
HC79IB1AAA	79IB	03/26/2001	SOIL GRID	0.00	0.50			OM31P	DIELDRIN	
HC79IB1BAA	79IB	03/26/2001	SOIL GRID	0.50	1.00			IM40PB	LEAD	
HC79IB1CAA	79IB	03/26/2001	SOIL GRID	1.00	1.50			IM40PB	LEAD	
HC79IB1CAA	79IB	03/26/2001	SOIL GRID	1.00	1.50			OM31P	DIELDRIN	
HC79IB1DAA	79IB	03/26/2001	SOIL GRID	1.50	2.00			IM40PB	LEAD	
HC79IB1DAA	79IB	03/26/2001	SOIL GRID	1.50	2.00			OM31P	DIELDRIN	
HC79IC1AAA	79IC	03/26/2001	SOIL GRID	0.00	0.50			IM40PB	LEAD	
HC79IC1AAA	79IC	03/26/2001	SOIL GRID	0.00	0.50			OM31P	DDT (1,1-BIS(CHLOROPHENYL)-	
HC79IC1AAA	79IC	03/26/2001	SOIL GRID	0.00	0.50			OM31P	DIELDRIN	
HC79IC1BAA	79IC	03/26/2001	SOIL GRID	0.50	1.00			IM40PB	LEAD	
HC79IC1BAD	79IC	03/26/2001	SOIL GRID	0.50	1.00			IM40PB	LEAD	
HC79IC1CAA	79IC	03/26/2001	SOIL GRID	1.00	1.50			IM40PB	LEAD	
HC79IC1DAA	79IC	03/26/2001	SOIL GRID	1.50	2.00			IM40PB	LEAD	
HC79IC1DAD	79IC	03/26/2001	SOIL GRID	1.50	2.00			IM40PB	LEAD	
HC79IC1DAD	79IC	03/26/2001	SOIL GRID	1.50	2.00			OM31P	DIELDRIN	
HC79ID1AAA	79ID	03/22/2001	SOIL GRID	0.00	0.50			IM40PB	LEAD	
HC79ID1AAA	79ID	03/22/2001	SOIL GRID	0.00	0.50			OM31P	DDE (1,1-BIS(CHLOROPHENYL)-	
HC79ID1AAA	79ID	03/22/2001	SOIL GRID	0.00	0.50			OM31P	DDT (1,1-BIS(CHLOROPHENYL)-	
HC79ID1AAA	79ID	03/22/2001	SOIL GRID	0.00	0.50			OM31P	DIELDRIN	

DATA REPORTED REFLECT CURRENT DATABASE FOR SAMPLES COLLECTED IN SPECIFIED TIMEFRAME. NOT ALL RESULTS ARE COMPLETE. SBD = SAMPLE COLLECTION BEGIN DEPTH IN FEET BGS SED = SAMPLE COLLECTION END DEPTH IN FEET BGS BWTS = DEPTH BELOW WATER TABLE, START DEPTH, MEASURED IN FEET BWTE = DEPTH BELOW WATER TABLE, END DEPTH, MEASURED IN FEET PDA/YES = Photo Diode Array, Detect Confirmed PDA/NO = Photo Diode Array, Detect Not Confirmed

OGDEN_ID	LOCID OR WELL ID	SAMPLED	SAMP_TYPE	SBD	SED	BWTS	BWTE	METHOD	OGDEN_ANALYTE	PDA
HC79ID1BAA	79ID	03/22/2001	SOIL GRID	0.50	1.00			IM40PB	LEAD	
HC79ID1BAA	79ID	03/22/2001	SOIL GRID	0.50	1.00			OM31P	DIELDRIN	ĺ
HC79ID1BAD	79ID	03/22/2001	SOIL GRID	0.50	1.00			IM40PB	LEAD	ĺ
HC79ID1BAD	79ID	03/22/2001	SOIL GRID	0.50	1.00			OM31P	DIELDRIN	ĺ
HC79ID1CAA	79ID	03/22/2001	SOIL GRID	1.00	1.50			IM40PB	LEAD	
HC79ID1DAA	79ID	03/22/2001	SOIL GRID	1.50	2.00			IM40PB	LEAD	
HC79IE1AAA	79IE	03/22/2001	SOIL GRID	0.00	0.50			IM40PB	LEAD	
HC79IE1AAA	79IE	03/22/2001	SOIL GRID	0.00	0.50			OM31P	DDE (1,1-BIS(CHLOROPHENYL)-	
HC79IE1AAA	79IE	03/22/2001	SOIL GRID	0.00	0.50			OM31P	DDT (1,1-BIS(CHLOROPHENYL)-	
HC79IE1AAA	79IE	03/22/2001	SOIL GRID	0.00	0.50			OM31P	DIELDRIN	
HC79IE1BAA	79IE	03/22/2001	SOIL GRID	0.50	1.00			IM40PB	LEAD	
HC79IE1BAA	79IE	03/22/2001	SOIL GRID	0.50	1.00			OM31P	DIELDRIN	
HC79IE1CAA	79IE	03/22/2001	SOIL GRID	1.00	1.50			IM40PB	LEAD	
HC79IE1DAA	79IE	03/22/2001	SOIL GRID	1.50	2.00			IM40PB	LEAD	
HC79IF1AAA	79IF	03/22/2001	SOIL GRID	0.00	0.50			IM40PB	LEAD	
HC79IF1AAA	79IF	03/22/2001	SOIL GRID	0.00	0.50			OM31P	DIELDRIN	
HC79IF1BAA	79IF	03/22/2001	SOIL GRID	0.50	1.00			IM40PB	LEAD	
HC79IF1CAA	79IF	03/22/2001	SOIL GRID	1.00	1.50			IM40PB	LEAD	
HC79IF1CAA	79IF	03/22/2001	SOIL GRID	1.00	1.50			OM31P	DIELDRIN	
HC79IF1DAA	79IF	03/22/2001	SOIL GRID	1.50	2.00			IM40PB	LEAD	
HC79IG1AAA	79IG	03/23/2001	SOIL GRID	0.00	0.50			IM40PB	LEAD	
HC79IG1AAA	79IG	03/23/2001	SOIL GRID	0.00	0.50			OM31P	DIELDRIN	
HC79IG1BAA	79IG	03/23/2001	SOIL GRID	0.50	1.00			IM40PB	LEAD	ĺ
HC79IG1BAA	79IG	03/23/2001	SOIL GRID	0.50	1.00			OM31P	DDE (1,1-BIS(CHLOROPHENYL)-	
HC79IG1BAA	79IG	03/23/2001	SOIL GRID	0.50	1.00			OM31P	DDT (1,1-BIS(CHLOROPHENYL)-	
HC79IG1BAA	79IG	03/23/2001	SOIL GRID	0.50	1.00			OM31P	DIELDRIN	
HC79IG1BAA	79IG	03/23/2001	SOIL GRID	0.50	1.00			OM31P	DIELDRIN	
HC79IG1CAA	79IG	03/23/2001	SOIL GRID	1.00	1.50			IM40PB	LEAD	
HC79IG1CAA	79IG	03/23/2001	SOIL GRID	1.00	1.50			OM31P	DIELDRIN	
HC79IG1DAA	79IG	03/23/2001	SOIL GRID	1.50	2.00			IM40PB	LEAD	
HC79IH1AAA	79IH	03/26/2001	SOIL GRID	0.00	0.50			IM40PB	LEAD	
HC79IH1AAA	79IH	03/26/2001	SOIL GRID	0.00	0.50			OM31P	DDE (1,1-BIS(CHLOROPHENYL)-	
HC79IH1AAA	79IH	03/26/2001	SOIL GRID	0.00	0.50			OM31P	DDT (1,1-BIS(CHLOROPHENYL)-	

DATA REPORTED REFLECT CURRENT DATABASE FOR SAMPLES COLLECTED IN SPECIFIED TIMEFRAME. NOT ALL RESULTS ARE COMPLETE. SBD = SAMPLE COLLECTION BEGIN DEPTH IN FEET BGS SED = SAMPLE COLLECTION END DEPTH IN FEET BGS BWTS = DEPTH BELOW WATER TABLE, START DEPTH, MEASURED IN FEET BWTE = DEPTH BELOW WATER TABLE, END DEPTH, MEASURED IN FEET PDA/YES = Photo Diode Array, Detect Confirmed PDA/NO = Photo Diode Array, Detect Not Confirmed

OGDEN_ID	LOCID OR WELL ID	SAMPLED	SAMP_TYPE	SBD	SED	BWTS	BWTE	METHOD	OGDEN_ANALYTE	PDA
HC79IH1AAA	79IH	03/26/2001	SOIL GRID	0.00	0.50			OM31P	DIELDRIN	
HC79IH1BAA	79IH	03/26/2001	SOIL GRID	0.50	1.00			IM40PB	LEAD	
HC79IH1BAA	79IH	03/26/2001	SOIL GRID	0.50	1.00			OM31P	DIELDRIN	
HC79IH1CAA	79IH	03/26/2001	SOIL GRID	1.00	1.50			IM40PB	LEAD	
HC79IH1CAA	79IH	03/26/2001	SOIL GRID	1.00	1.50			OM31P	DIELDRIN	
HC79IH1DAA	79IH	03/26/2001	SOIL GRID	1.50	2.00			IM40PB	LEAD	
HC87E1AAA	87E	03/21/2001	SOIL GRID	0.00	0.50			8330N	2,4,6-TRINITROTOLUENE	YES
HC87E1BAA	87E	03/21/2001	SOIL GRID	0.50	1.00			8330N	2,4,6-TRINITROTOLUENE	YES
HC87E1CAA	87E	03/21/2001	SOIL GRID	1.00	1.50			8330N	2,4,6-TRINITROTOLUENE	YES
HD87E1BAA	87E	03/21/2001	SOIL GRID	0.50	1.00			8330N	2,4,6-TRINITROTOLUENE	YES
HD87E1DAA	87E	03/21/2001	SOIL GRID	1.50	2.00			8330N	2,4,6-TRINITROTOLUENE	YES
HD87E3AAA	87E	03/21/2001	SOIL GRID	0.00	0.50			8330N	HEXAHYDRO-1,3,5-TRINITRO-1,3	YES
HD87E5AAA	87E	03/21/2001	SOIL GRID	0.00	0.50			8330N	2,4,6-TRINITROTOLUENE	YES
HD87E5AAA	87E	03/21/2001	SOIL GRID	0.00	0.50			8330N	PICRIC ACID	NO
HD87E5CAA	87E	03/21/2001	SOIL GRID	1.00	1.50			8330N	2,4,6-TRINITROTOLUENE	YES
HD87E7CAA	87E	03/21/2001	SOIL GRID	1.00	1.50			8330N	2,4,6-TRINITROTOLUENE	YES
HD87E7CAD	87E	03/21/2001	SOIL GRID	1.00	1.50			8330N	2,4,6-TRINITROTOLUENE	YES
HD87E7DAA	87E	03/21/2001	SOIL GRID	1.50	2.00			8330N	2,4,6-TRINITROTOLUENE	YES

DATA REPORTED REFLECT CURRENT DATABASE FOR SAMPLES COLLECTED IN SPECIFIED TIMEFRAME. NOT ALL RESULTS ARE COMPLETE. SBD = SAMPLE COLLECTION BEGIN DEPTH IN FEET BGS SED = SAMPLE COLLECTION END DEPTH IN FEET BGS BWTS = DEPTH BELOW WATER TABLE, START DEPTH, MEASURED IN FEET BWTE = DEPTH BELOW WATER TABLE, END DEPTH, MEASURED IN FEET PDA/YES = Photo Diode Array, Detect Confirmed PDA/NO = Photo Diode Array, Detect Not Confirmed

600 1200 Feet Inset A

J:\GIS\April2001\all_mmr_wells_inset_a.pdf G:\MMR\MMR\arcVprj\concentbox.apr April 11, 2001 PRC

0

